DOI QR코드

DOI QR Code

Statistical Optimization of Medium Composition for Bacterial Cellulose Production by Gluconacetobacter hansenii UAC09 Using Coffee Cherry Husk Extract - an Agro-Industry Waste

  • Rani, Mahadevaswamy Usha (Department of Food Microbiology, Central Food Technological Research Institute, Council of Scientific and Industrial Research) ;
  • Rastogi, Navin K. (Department of Food Engineering, Central Food Technological Research Institute, Council of Scientific and Industrial Research) ;
  • Anu Appaiah, K.A. (Department of Food Microbiology, Central Food Technological Research Institute, Council of Scientific and Industrial Research)
  • 투고 : 2010.12.24
  • 심사 : 2011.04.07
  • 발행 : 2011.07.28

초록

During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5-8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5-2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.

키워드

참고문헌

  1. Ahmad, K. M., R. Hamid, M. Ahmad, M. Z. Abdin, and S. Javed. 2010. Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology. J. Microbiol. Biotechnol. 20: 1597-1602. https://doi.org/10.4014/jmb.0909.09040
  2. Bressani, R. 1979. Anti-physiological factors in coffee pulp, pp. 83-88. In J. E. Braham and R. Bressani R (eds.). Coffee Pulp: Composition, Technology and Utilization, Publication 108c. International Development Research
  3. Cochran, W. G. and G. M. Cox. 1957. Experimental Designs. John Wiley and Sons, NY, USA.
  4. El-Saied, H., A. I. El-Diwany, A. H. Basta, N. A. Atwa, D. E. El-Ghwas. 2008. Production and characterization of economical bacterial cellulose. BioResources 3: 1196-1217.
  5. Joglekar, A. M. and A. T. May. 1987. Product excellence through design of experiments. Cereal Foods World 32: 857- 868.
  6. Jonas, R. and L. F. Farah. 1998. Production and application of microbial cellulose. Polym. Degrad. Stability 59: 101-106. https://doi.org/10.1016/S0141-3910(97)00197-3
  7. Khuri, A. I. and J. A. Cornell. 1987. Response Surface Design and Analysis, pp. 21-45. Marcel Dekker, NY, USA.
  8. Matsuoka, M., T. Tsuchida, K. Matsushita, O. Adachi, and F. Yoshinaga. 1996. A synthetic medium for bacteral cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci. Biotechnol. Biochem. 60: 575-579. https://doi.org/10.1271/bbb.60.575
  9. Nandini, K. E. and N. K. Rastogi. 2010. Separation and purification of lipase using reverse micellar extraction: Optimization of conditions by response surface methodology. Biotechnol. Bioprocess Eng. 15: 349-358. https://doi.org/10.1007/s12257-009-0091-2
  10. Naritomi, T., T. Kouda, H. Yano, and F. Yoshinaga. 1998. Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J. Ferment. Bioeng. 85: 598-603. https://doi.org/10.1016/S0922-338X(98)80012-3
  11. Nguyen, V. T., B. Flanagan, M. J. Gidley, and G. A. Dykes. 2008. Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Curr. Microbiol. 57: 449-453. https://doi.org/10.1007/s00284-008-9228-3
  12. Ochaikul, D., K. Chotirittikrai, J. Chantra, and S. Wutigornsombatkul. 2006. Studies on fermentation of Monascus purpureus TISTR 3090 with bacterial cellulose from Acetobacter xylinum TISTR 967. KMITL Sci. Technol. J. 6: 13-17.
  13. Panday, A., C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos. 2000. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem. Eng. J. 6: 153-159. https://doi.org/10.1016/S1369-703X(00)00084-X
  14. Ramana, K. V., A. Tomar, and L. Singh. 2000. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J. Microbiol. Biotechnol. 16: 245-248. https://doi.org/10.1023/A:1008958014270
  15. Sawhney and Singh. 2006. Introductory Practical Biochemistry. Narosa Publishing House, New Delhi, India.
  16. Schramm, M. and S. Hestrin. 1954. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 11: 123-129. https://doi.org/10.1099/00221287-11-1-123
  17. Son, H. J., M. S. Heo, Y. G. Kim, and S. J. Lee. 2001. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol. Appl. Biochem. 33: 1-5. https://doi.org/10.1042/BA20000065
  18. Svensson, A., E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan, M. Brittberg, and P. Gateholm. 2005. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26: 419-431. https://doi.org/10.1016/j.biomaterials.2004.02.049
  19. Tie, Y., L. Miao, F. Guan, G. Wang, Q. Peng, B. Li, G. Guan, and Y. Li. 2010. Optimized medium improves expression and secretion of extremely thermostable bacterial xylanase, XynB, in Kluyveromyces lactis. J. Microbiol. Biotechnol. 20: 1471- 1480. https://doi.org/10.4014/jmb.1005.05041
  20. Usha Rani, M. and K. A. Anu Appaiah. 2010. Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J. Food Sci. Technol. DOI: 10.1007/s13197- 011-0401-5.
  21. Usha Rani, M., K. Udayasankar, and K. A. Anu Appaiah. 2010. Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J. Appl. Polym. Sci. 120: 2835-2841.
  22. Usha Rani, M. and K. A. Anu Appaiah. 2010. Optimization of cultural conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Ann. Microbiol. DOI 10.1007/s13213-011-0196-7.
  23. Venugopal, C., M. R. Rai, and K. A. A. Appaiah. 2004. Mycotypha sps strain no. AKM 1801 - Novel thermophilic fungi for alkalization of coffee husk effluent. Asian J. Microbiol. Biotechnol. Envir. Sci. 6: 525-527.
  24. Vijayendra, S. V. N., N. K. Rastogi, T. R. Shamala, P. K. Anil Kumar, L. Kshama, and G. J. Joshi. 2007. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian J. Microbiol. 47: 170-175. https://doi.org/10.1007/s12088-007-0033-7
  25. Yoshino, T., T. Asakura, and K. Toda. 1996. Cellulose production by Acetobacter pasteurianus on silicone membrane. J. Ferment. Bioeng. 81: 32-36. https://doi.org/10.1016/0922-338X(96)83116-3
  26. Yuan, Y. V., D. E. Bone, and M. F. Carrington. 2005. Antioxidant activity of dulse extract evaluated in vitro. Food Chem. 95: 485-494.
  27. Zuluaga-Vasco, J. 1989. Utilization integral de los subproducts del cafe. pp. 63-76. In S. Roussas S, R. Licona Franco, and M. Gutierrz Rojas (eds.). Proceedings of 1 Seminario International Sobre Biotechnologia en la Agroindustria Cafetalera (SIBAC), Xalapa, Mexico, ORSTOM. Montpelliar, France.

피인용 문헌

  1. Statistical optimization of culture conditions for enhanced bacterial cellulose production by Gluconoacetobacter hansenii NCIM 2529 vol.19, pp.5, 2011, https://doi.org/10.1007/s10570-012-9760-y
  2. Statistical Optimization for Monacolin K and Yellow Pigment Production and Citrinin Reduction by Monascus purpureus in Solid-State Fermentation vol.23, pp.3, 2011, https://doi.org/10.4014/jmb.1206.06068
  3. Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus vol.21, pp.2, 2013, https://doi.org/10.1007/s10924-012-0541-3
  4. Utilization of Makgeolli Sludge Filtrate (MSF) as Low-Cost Substrate for Bacterial Cellulose Production by Gluconacetobacter xylinus vol.172, pp.8, 2011, https://doi.org/10.1007/s12010-014-0810-9
  5. Film forming microbial biopolymers for commercial applications—A review vol.34, pp.4, 2011, https://doi.org/10.3109/07388551.2013.798254
  6. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media vol.99, pp.3, 2011, https://doi.org/10.1007/s00253-014-6232-3
  7. Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production vol.7, pp.71, 2011, https://doi.org/10.1039/c7ra08391b
  8. Production and Status of Bacterial Cellulose in Biomedical Engineering vol.7, pp.9, 2011, https://doi.org/10.3390/nano7090257
  9. Feasibility of Bioethanol Production from Cider Waste vol.28, pp.9, 2011, https://doi.org/10.4014/jmb.1801.01044
  10. Microbial Cellulose from a Komagataeibacter intermedius Strain Isolated from Commercial Wine Vinegar vol.27, pp.5, 2019, https://doi.org/10.1007/s10924-019-01403-4
  11. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications vol.9, pp.10, 2011, https://doi.org/10.3390/nano9101352
  12. Efficient eco-friendly approach towards bimetallic nanoparticles synthesis and characterization using Exiguobacterium aestuarii by statistical optimization vol.12, pp.4, 2011, https://doi.org/10.1080/17518253.2019.1687762
  13. Ecofriendly green biosynthesis of bacterial cellulose by Komagataeibacter xylinus B2-1 using the shell extract of Sapindus mukorossi Gaertn. as culture medium vol.27, pp.3, 2020, https://doi.org/10.1007/s10570-019-02868-1
  14. Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling vol.27, pp.5, 2011, https://doi.org/10.1007/s10570-019-02961-5
  15. Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design vol.57, pp.7, 2011, https://doi.org/10.1007/s13197-020-04289-6
  16. The optimization of bacterial cellulose production and its applications: a review vol.27, pp.12, 2020, https://doi.org/10.1007/s10570-020-03273-9
  17. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1 vol.10, pp.None, 2011, https://doi.org/10.1038/s41598-020-60315-9
  18. Novel research on nanocellulose production by a marine Bacillus velezensis strain SMR: a comparative study vol.10, pp.1, 2011, https://doi.org/10.1038/s41598-020-70857-7
  19. BACTERIAL CELLULOSE AS A BASE MATERIAL IN BIODIGITAL ARCHITECTURE (BETWEEN BIO-MATERIAL DEVELOPMENT AND STRUCTURAL CUSTOMIZATION). vol.16, pp.2, 2011, https://doi.org/10.3992/jgb.16.2.173
  20. Optimization of Moist and Oven-Dried Bacterial Cellulose Production for Functional Properties vol.13, pp.13, 2011, https://doi.org/10.3390/polym13132088