참고문헌
- Ahmad, K. M., R. Hamid, M. Ahmad, M. Z. Abdin, and S. Javed. 2010. Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology. J. Microbiol. Biotechnol. 20: 1597-1602. https://doi.org/10.4014/jmb.0909.09040
- Bressani, R. 1979. Anti-physiological factors in coffee pulp, pp. 83-88. In J. E. Braham and R. Bressani R (eds.). Coffee Pulp: Composition, Technology and Utilization, Publication 108c. International Development Research
- Cochran, W. G. and G. M. Cox. 1957. Experimental Designs. John Wiley and Sons, NY, USA.
- El-Saied, H., A. I. El-Diwany, A. H. Basta, N. A. Atwa, D. E. El-Ghwas. 2008. Production and characterization of economical bacterial cellulose. BioResources 3: 1196-1217.
- Joglekar, A. M. and A. T. May. 1987. Product excellence through design of experiments. Cereal Foods World 32: 857- 868.
- Jonas, R. and L. F. Farah. 1998. Production and application of microbial cellulose. Polym. Degrad. Stability 59: 101-106. https://doi.org/10.1016/S0141-3910(97)00197-3
- Khuri, A. I. and J. A. Cornell. 1987. Response Surface Design and Analysis, pp. 21-45. Marcel Dekker, NY, USA.
- Matsuoka, M., T. Tsuchida, K. Matsushita, O. Adachi, and F. Yoshinaga. 1996. A synthetic medium for bacteral cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci. Biotechnol. Biochem. 60: 575-579. https://doi.org/10.1271/bbb.60.575
- Nandini, K. E. and N. K. Rastogi. 2010. Separation and purification of lipase using reverse micellar extraction: Optimization of conditions by response surface methodology. Biotechnol. Bioprocess Eng. 15: 349-358. https://doi.org/10.1007/s12257-009-0091-2
- Naritomi, T., T. Kouda, H. Yano, and F. Yoshinaga. 1998. Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J. Ferment. Bioeng. 85: 598-603. https://doi.org/10.1016/S0922-338X(98)80012-3
- Nguyen, V. T., B. Flanagan, M. J. Gidley, and G. A. Dykes. 2008. Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Curr. Microbiol. 57: 449-453. https://doi.org/10.1007/s00284-008-9228-3
- Ochaikul, D., K. Chotirittikrai, J. Chantra, and S. Wutigornsombatkul. 2006. Studies on fermentation of Monascus purpureus TISTR 3090 with bacterial cellulose from Acetobacter xylinum TISTR 967. KMITL Sci. Technol. J. 6: 13-17.
- Panday, A., C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos. 2000. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem. Eng. J. 6: 153-159. https://doi.org/10.1016/S1369-703X(00)00084-X
- Ramana, K. V., A. Tomar, and L. Singh. 2000. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J. Microbiol. Biotechnol. 16: 245-248. https://doi.org/10.1023/A:1008958014270
- Sawhney and Singh. 2006. Introductory Practical Biochemistry. Narosa Publishing House, New Delhi, India.
- Schramm, M. and S. Hestrin. 1954. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 11: 123-129. https://doi.org/10.1099/00221287-11-1-123
- Son, H. J., M. S. Heo, Y. G. Kim, and S. J. Lee. 2001. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol. Appl. Biochem. 33: 1-5. https://doi.org/10.1042/BA20000065
- Svensson, A., E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan, M. Brittberg, and P. Gateholm. 2005. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26: 419-431. https://doi.org/10.1016/j.biomaterials.2004.02.049
- Tie, Y., L. Miao, F. Guan, G. Wang, Q. Peng, B. Li, G. Guan, and Y. Li. 2010. Optimized medium improves expression and secretion of extremely thermostable bacterial xylanase, XynB, in Kluyveromyces lactis. J. Microbiol. Biotechnol. 20: 1471- 1480. https://doi.org/10.4014/jmb.1005.05041
- Usha Rani, M. and K. A. Anu Appaiah. 2010. Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J. Food Sci. Technol. DOI: 10.1007/s13197- 011-0401-5.
- Usha Rani, M., K. Udayasankar, and K. A. Anu Appaiah. 2010. Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J. Appl. Polym. Sci. 120: 2835-2841.
- Usha Rani, M. and K. A. Anu Appaiah. 2010. Optimization of cultural conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Ann. Microbiol. DOI 10.1007/s13213-011-0196-7.
- Venugopal, C., M. R. Rai, and K. A. A. Appaiah. 2004. Mycotypha sps strain no. AKM 1801 - Novel thermophilic fungi for alkalization of coffee husk effluent. Asian J. Microbiol. Biotechnol. Envir. Sci. 6: 525-527.
- Vijayendra, S. V. N., N. K. Rastogi, T. R. Shamala, P. K. Anil Kumar, L. Kshama, and G. J. Joshi. 2007. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian J. Microbiol. 47: 170-175. https://doi.org/10.1007/s12088-007-0033-7
- Yoshino, T., T. Asakura, and K. Toda. 1996. Cellulose production by Acetobacter pasteurianus on silicone membrane. J. Ferment. Bioeng. 81: 32-36. https://doi.org/10.1016/0922-338X(96)83116-3
- Yuan, Y. V., D. E. Bone, and M. F. Carrington. 2005. Antioxidant activity of dulse extract evaluated in vitro. Food Chem. 95: 485-494.
- Zuluaga-Vasco, J. 1989. Utilization integral de los subproducts del cafe. pp. 63-76. In S. Roussas S, R. Licona Franco, and M. Gutierrz Rojas (eds.). Proceedings of 1 Seminario International Sobre Biotechnologia en la Agroindustria Cafetalera (SIBAC), Xalapa, Mexico, ORSTOM. Montpelliar, France.
피인용 문헌
- Statistical optimization of culture conditions for enhanced bacterial cellulose production by Gluconoacetobacter hansenii NCIM 2529 vol.19, pp.5, 2011, https://doi.org/10.1007/s10570-012-9760-y
- Statistical Optimization for Monacolin K and Yellow Pigment Production and Citrinin Reduction by Monascus purpureus in Solid-State Fermentation vol.23, pp.3, 2011, https://doi.org/10.4014/jmb.1206.06068
- Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus vol.21, pp.2, 2013, https://doi.org/10.1007/s10924-012-0541-3
- Utilization of Makgeolli Sludge Filtrate (MSF) as Low-Cost Substrate for Bacterial Cellulose Production by Gluconacetobacter xylinus vol.172, pp.8, 2011, https://doi.org/10.1007/s12010-014-0810-9
- Film forming microbial biopolymers for commercial applications—A review vol.34, pp.4, 2011, https://doi.org/10.3109/07388551.2013.798254
- Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media vol.99, pp.3, 2011, https://doi.org/10.1007/s00253-014-6232-3
- Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production vol.7, pp.71, 2011, https://doi.org/10.1039/c7ra08391b
- Production and Status of Bacterial Cellulose in Biomedical Engineering vol.7, pp.9, 2011, https://doi.org/10.3390/nano7090257
- Feasibility of Bioethanol Production from Cider Waste vol.28, pp.9, 2011, https://doi.org/10.4014/jmb.1801.01044
- Microbial Cellulose from a Komagataeibacter intermedius Strain Isolated from Commercial Wine Vinegar vol.27, pp.5, 2019, https://doi.org/10.1007/s10924-019-01403-4
- Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications vol.9, pp.10, 2011, https://doi.org/10.3390/nano9101352
- Efficient eco-friendly approach towards bimetallic nanoparticles synthesis and characterization using Exiguobacterium aestuarii by statistical optimization vol.12, pp.4, 2011, https://doi.org/10.1080/17518253.2019.1687762
- Ecofriendly green biosynthesis of bacterial cellulose by Komagataeibacter xylinus B2-1 using the shell extract of Sapindus mukorossi Gaertn. as culture medium vol.27, pp.3, 2020, https://doi.org/10.1007/s10570-019-02868-1
- Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling vol.27, pp.5, 2011, https://doi.org/10.1007/s10570-019-02961-5
- Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design vol.57, pp.7, 2011, https://doi.org/10.1007/s13197-020-04289-6
- The optimization of bacterial cellulose production and its applications: a review vol.27, pp.12, 2020, https://doi.org/10.1007/s10570-020-03273-9
- Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1 vol.10, pp.None, 2011, https://doi.org/10.1038/s41598-020-60315-9
- Novel research on nanocellulose production by a marine Bacillus velezensis strain SMR: a comparative study vol.10, pp.1, 2011, https://doi.org/10.1038/s41598-020-70857-7
- BACTERIAL CELLULOSE AS A BASE MATERIAL IN BIODIGITAL ARCHITECTURE (BETWEEN BIO-MATERIAL DEVELOPMENT AND STRUCTURAL CUSTOMIZATION). vol.16, pp.2, 2011, https://doi.org/10.3992/jgb.16.2.173
- Optimization of Moist and Oven-Dried Bacterial Cellulose Production for Functional Properties vol.13, pp.13, 2011, https://doi.org/10.3390/polym13132088