참고문헌
- Amaral, L. S. and E. Rodrigues-Filho. 2010. Two novel eremophilane sesquiterpenes from an endophytic Xylariaceous fungus isolated from leaves of Cupressus lusitanica. J. Braz. Chem. Soc. 21: 1446-1450. https://doi.org/10.1590/S0103-50532010000800006
- Chen, J., H. Ferris, K. M. Scow, and K. J. Grahan. 2001. Fatty acid composition and dynamics of selected fungal-feeding nematodes and fungi. Comp. Biochem. Physiol. Biochem. Molec. Biol. 130: 135-144. https://doi.org/10.1016/S1096-4959(01)00414-6
- Chisti, Y. 2007. Biodiesel from microalgae. Biotech. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Durrett, T. P., C. Benning, and J. Ohlrogge. 2008. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 54: 593-607. https://doi.org/10.1111/j.1365-313X.2008.03442.x
- European Committee for Standardization. 2003. EN14103: Fatty acid methyl esters (FAME) - Determination of ester and linolenic acid methyl esters contents. Brussels.
- Fakas, S., S. Papanikolaou, M. Galiotou-Panauotou, M. Komaitis, and G. Aggelis. 2008. Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J. Appl. Microbiol. 105: 1062- 1070. https://doi.org/10.1111/j.1365-2672.2008.03839.x
- Fakas, S., S. Papanikolaou, A. Batsos, M. Galiotou-Panayotou, A. Mallouchos, and G. Aggelis. 2009. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33: 573-580. https://doi.org/10.1016/j.biombioe.2008.09.006
- Fill, T. P., R. M. G. dos Santos, A. Barison, E. Rodrigues Filho, and A. Q. L. Souza. 2009. Co-production of bisphenylpropanoid amides and meroterpenes by an endophytic penicillium brasilianum found in the root bark of Melia azedarach. Z. Naturforsch C 64: 355-360.
- Fill, T. P., B. F. Silva, and E. Rodrigues-Filho. 2010. Biosynthesis of phenylpropanoid amides by an endophytic Penicillium brasilianum found in root bark of Melia azedarach. J. Microbiol. Biotechnol. 20: 622-629.
- Formo, M. 1954. Ester reactions of fatty materials. J. Am. Oil Chem. Soc. 31: 548-559. https://doi.org/10.1007/BF02638571
- Galembeck, F., C. A. S. Barbosa, and R. A. de Souza. 2009. Aproveitamento sustentavel de biomassa e de recursos naturais na inovacao quimica. Quim. Nova 32: 571-581. https://doi.org/10.1590/S0100-40422009000300003
- Geris dos Santos, R. M. and E. Rodrigues-Fo. 2002. Meroterpenes from Penicillium sp. found in association with Melia azedarach. Phytochemistry 61: 907-912. https://doi.org/10.1016/S0031-9422(02)00379-5
- Goldemberg, J. 2009. Biomassa e energia. Quim. Nova 32: 582-587. https://doi.org/10.1590/S0100-40422009000300004
- Gouda, M., S. H. Omar, and L. M. Aouad. 2008. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 24: 1703-1711. https://doi.org/10.1007/s11274-008-9664-z
- Helwani, Z., M. R. Othman, N. Aziz, W. J. N. Fernando, and J. Kim. 2009. Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process. Technol. 90: 1502-1514. https://doi.org/10.1016/j.fuproc.2009.07.016
- Illman, A. M., A. H. Scragg, and S. W. Shales. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microbial Technol. 27: 631-635. https://doi.org/10.1016/S0141-0229(00)00266-0
- Knothe, G. 2006. Analyzing biodiesel: Standards and other methods. J. Am. Oil Chem. Soc. 83: 823-833. https://doi.org/10.1007/s11746-006-5033-y
- Li, Q., W. Du, and D. Liu. 2008. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol. 80: 749- 756. https://doi.org/10.1007/s00253-008-1625-9
- MacLafferty, F. W. and F. Turesek. 1993. Interpretation of Mass Spectra. 4th Ed. University Science Books.
- Marques, M. V., F. F. Naciuk, A. M. S. Mello, N. M. Seibel, and L. A. M. Fontoura. 2010. Determinacao do teor de esteres graxos em biodiesel metilico de soja por cromatografia gasosa utilizando oleato de etila como padrao interno. Quim. Nova 33: 978-980. https://doi.org/10.1590/S0100-40422010000400039
- Marques, M. V., C. F. G. Silva, F. F. Naciuk, and L. A. M. Fontoura. 2008. A quimica, os processos de obtencao e as especificacoes do biodiesel. Revista Analytica 33: 72-87.
- Meher, L. C., D. Vidya Sagar, and S. N. Naik. 2006. Technical aspects of biodiesel production by transesterification--a review. Renew. Sustain. Energy Rev. 10: 248-268. https://doi.org/10.1016/j.rser.2004.09.002
- Meng, X., J. Yang, X. Xu, L. Zhang, Q. Nie, and M. Xian. 2009. Biodiesel production from oleaginous microorganisms. Renew. Energy 34: 1-5. https://doi.org/10.1016/j.renene.2008.04.014
- Monteiro, M. R., A. R. P. Ambrozin, L. M. Liao, and A. G. Ferreira. 2008. Critical review on analytical methods for biodiesel characterization. Talanta 77: 593-605. https://doi.org/10.1016/j.talanta.2008.07.001
- Navarro, E., J. M. Lorca-Pascual, M. D. Quilles-Rosillo, F. E. Nicolas, V. Garre, S. Torres-Martinez, et al. 2001. A negative regulator of light-inducible carotenogenesis Mucor circinelloides. Molec. Genet. Genomics 266: 463-470. https://doi.org/10.1007/s004380100558
- Nicolas, F. E., S. Torres-Martinez, and R. M. Ruiz-Vazquez. 2003. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. EMBO J. 22: 3983-3991. https://doi.org/10.1093/emboj/cdg384
- Papanikolaou, S., M. Komaitis, and G. Aggelis. 2004. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour. Technol. 95: 287-291.
- Petrini, O., T. N. Sieber, L. Toti, and O. Viret. 1992. Ecology, metabolite production and substrate utilization in endophytic fungi. Nat. Toxins 1: 185-196.
- Pinto, A. C., L. L. N. Guarieiro, M. J. C. Rezende, N. M. Ribeiro, E. A. Torres, W. A. Lopes, et al. 2005. Biodiesel: An overview. J. Braz. Chem. Soc. 16: 1313-1330. https://doi.org/10.1590/S0103-50532005000800003
- Proenca Barros, F. A. and E. Rodrigues-Filho. 2005. Four spiroquinazoline alkaloids from Eupenicillium sp. isolated as an endophytic fungus from leaves of Murraya paniculata (Rutaceae). Biochem. Syst. Ecol. 33: 257-268. https://doi.org/10.1016/j.bse.2004.09.002
- Schuchardt, U., R. Sercheli, and R. M. Vargas. 1998. Transesterification of vegetable oils: A review. J. Braz. Chem. Soc. 9: 199-210.
- Souza, A. D. L., E. Rodrigues-Filho, A. Q. L. Souza, J. O. Pereira, A. K. Calgarotto, V. Maso, et al. 2008. Koninginins, phospholipase A2 inhibitors from endophytic fungus Trichoderma koningii. Toxicon 51: 240-250. https://doi.org/10.1016/j.toxicon.2007.09.009
- The National Petroleum Agency, Natural Gas and Biofuels of Brazil. 2008. Resolution no 7. [online] Available at: http://nxt.anp. gov.br/NXT/gateway.dll/leg/resolucoes_anp/2008/mar%C3%A7o/ ranp%207%20-%202008.xml?f=templates$fn=document-
- Vicente, G., L. F. Bautista, R. Rodriguez, F. J. Gutiérrez, I. Sábada, R. M. Ruiz-Vázquez, et al. 2009. Biodiesel production from biomass of an oleaginous fungus. Biochem. Eng. J. 48: 22- 27. https://doi.org/10.1016/j.bej.2009.07.014
- Vicente, G., L. F. Bautista, F. J. Gutiérrez, R. Rodriguez, V. Martinez, R. Rodriguez-Frómeta, et al. 2010. Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels 24: 3173-3178. https://doi.org/10.1021/ef9015872
- Vicente, G., M. Martínez, and J. Aracil. 2004. Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresour. Technol. 92: 297-305. https://doi.org/10.1016/j.biortech.2003.08.014
- Vichi, F. M. and M. T. C. Mansor. 2009. Energia, meio ambiente e economia: o Brasil no contexto mundial. Quim. Nova 32: 757-767. https://doi.org/10.1590/S0100-40422009000300019
- Wynn, J. P. and C. Ratledge. 1997. Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143: 253-257. https://doi.org/10.1099/00221287-143-1-253
- Wynn, J., A. Kendrick, and C. Ratledge. 1997. Sesamol as an inhibitor of growth and lipid metabolism in Mucor circinelloides via its action on malic enzyme. Lipids 32: 605-610. https://doi.org/10.1007/s11745-997-0077-1
피인용 문헌
- Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi vol.158, pp.1, 2011, https://doi.org/10.1099/mic.0.051946-0
- Current perspectives on the volatile-producing fungal endophytes vol.32, pp.4, 2011, https://doi.org/10.3109/07388551.2011.651429
- Endophytic Fungal Strains of Soybean for Lipid Production vol.7, pp.1, 2011, https://doi.org/10.1007/s12155-013-9377-5
- Endophytic Fungi: Prospects in Biofuel Production vol.85, pp.1, 2015, https://doi.org/10.1007/s40011-013-0294-3
- Insights into Penicillium brasilianum Secondary Metabolism and Its Biotechnological Potential vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22060858
- 제주 수생식물에서 분리한 내생균류의 다양성 vol.27, pp.6, 2011, https://doi.org/10.5352/jls.2017.27.6.661
- Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions vol.102, pp.15, 2011, https://doi.org/10.1007/s00253-018-9101-7
- Characterization of the lipid profile of Antarctic brown seaweeds and their endophytic fungi by gas chromatography-mass spectrometry (GC-MS) vol.42, pp.8, 2011, https://doi.org/10.1007/s00300-019-02529-w
- 표주박이끼(Funaria hygrometrica)에서 분리된 2종의 국내 미기록 내생균 vol.47, pp.4, 2011, https://doi.org/10.4489/kjm.20190036