DOI QR코드

DOI QR Code

Simultaneous Saccharification and Fermentation of Ground Corn Stover for the Production of Fuel Ethanol Using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011

  • Vincent, Micky (Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak) ;
  • Pometto III, Anthony L. (Department of Food Science and Human Nutrition, Clemson University) ;
  • Leeuwen, J. (Hans) Van (Department of Civil, Construction, and Environmental Engineering, Iowa State University)
  • Received : 2010.10.21
  • Accepted : 2011.05.07
  • Published : 2011.07.28

Abstract

Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.

Keywords

References

  1. Abbas, A., H. Koc, F. Liu, and M. Tien. 2005. Fungal degradation of wood: Initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr. Genet. 47: 49-56. https://doi.org/10.1007/s00294-004-0550-4
  2. Adney, B. and J. Baker. 2008. Measurement of Cellulase Activities. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42628. Available at http://www.nrel.gov/ biomass/pdfs/42628.pdf.
  3. Antai, S. P. and D. L. Crawford. 1981. Degradation of softwood, hardwood, and grass lignocelluloses by two Streptomyces strains. Appl. Environ. Microbiol. 42: 378-380.
  4. Arantes, V. and A. M. F. Milagres. 2006. Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction. J. Chem. Technol. Biotechnol. 81: 413-419. https://doi.org/10.1002/jctb.1417
  5. Brekke, K. 2005. The promise of cellulosic ethanol. Ethanol Today 6: 32-35.
  6. Cantarella, M., L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani. 2004. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Progress 20: 200-206.
  7. Chundawat, S. P. S., B. Venkatesh, and B. E. Dale. 2007. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. Bioeng. 96: 219-231. https://doi.org/10.1002/bit.21132
  8. Cohen, R., M. R. Suzuki, and K. E. Hammel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 71: 2412-2417. https://doi.org/10.1128/AEM.71.5.2412-2417.2005
  9. Crawford, D. L. and A. L. Pometto III. 1988. Acid-precipitable polymeric lignin: Production and analysis. Methods Enzymol. 161: 35-47.
  10. Daniel, G., J. Volc, L. Filonova, O. Plíhal, E. Kubátov, and P. Halada. 2007. Characteristics of alcohol oxidase from the fungus Gloeophyllum trabeum, an extracellular source of H2O2 in brown rot decay of wood. Appl. Environ. Microbiol. 73: 6241-6253. https://doi.org/10.1128/AEM.00977-07
  11. de La Torre Ugarte, D. G., M. E. Walsh, H. Shapouri, and S. P. Slinsky. 2003. The Economic Impacts of Bioenergy Crop Production on U.S. Agriculture. Agricultural Economic Report No. 816. U. S. Department of Agriculture, Economic Research Service, U. S. Government Printing Office, Washington, DC.
  12. Donohoe, B. S., M. J. Selig, S. Viamajala, T. B. Vinzant, W. S. Adney, and M. E. Himmel. 2009. Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy. Biotechnol. Bioeng. 103: 480-489. https://doi.org/10.1002/bit.22281
  13. Duguid, K. B., M. D. Montross, C. W. Radtke, C. L. Crofcheck, L. M. Wendt, and S.A. Shearer. 2009. Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Bioresour. Technol. 100: 5189-5195. https://doi.org/10.1016/j.biortech.2009.03.082
  14. Eliasson, A., C. Christensson, C. F. Wahlbom, and B. H. Gerdal. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66: 3381-3386. https://doi.org/10.1128/AEM.66.8.3381-3386.2000
  15. Galbe, M. and G. Zacchi. 2007. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Eng. Biotechnol. 108: 41-65.
  16. García-Cubero, M. T., G. González-Benito, I. Indacoechea, M. Coca, and S. Bolado. 2009. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour. Technol. 100: 1608-1613. https://doi.org/10.1016/j.biortech.2008.09.012
  17. Gebler, J. C., R. Aebersold, and S. G. Withers. 1992. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) ${\beta}-galactosidase$ from Escherichia coli. J. Biol. Chem. 267: 11126- 11130.
  18. Ghose, T. K. 1987. Measurement of cellulase activites. Pure Appl. Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
  19. He, X., Y. Miao, X. Jiang, Z. Xu, and P. Ouyang. 2010. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. Appl. Biochem. Biotechnol. 160: 2449-2457. https://doi.org/10.1007/s12010-009-8736-3
  20. Hendriks, A. T. W. M. and G. Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  21. Keating, J. D., C. Panganiban, and S. D. Mansfield. 2006. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206. https://doi.org/10.1002/bit.20838
  22. Kerem Z., K. A. Jensen Jr, and K. E. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446: 49-54. https://doi.org/10.1016/S0014-5793(99)00180-5
  23. Kersten, P. and D. Cullen. 2007. Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Gen. Biol. 44: 77-87. https://doi.org/10.1016/j.fgb.2006.07.007
  24. Keshwani, D. R. and J. J. Cheng. 2009. Switchgrass for bioethanol and other value-added applications: A review. Bioresour. Technol. 100: 1515-1523. https://doi.org/10.1016/j.biortech.2008.09.035
  25. Kim, T. H., N. P. Nghiem, and K. B. Hicks. 2009. Pretreatment and fractionation of corn stover by soaking in ethanol and aqueous ammonia. Appl. Biochem. Biotechnol. 153: 171-179. https://doi.org/10.1007/s12010-009-8524-0
  26. Kumar, R. and C. E. Wyman. 2009. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol. Bioeng. 103: 252-267. https://doi.org/10.1002/bit.22258
  27. Lim, K. N. 2004. Conversion of lignocellulosic biomass to fuel ethanol - A brief review. The Planter 80: 517-524.
  28. Liu, S., K. A. Skinner-Nemec, and T. D. Leathers. 2008. Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. J. Ind. Microbiol. Biotechnol. 35: 75-81. https://doi.org/10.1007/s10295-007-0267-8
  29. Liu, H., M. Yan, C. Lai, L. Xu, and P. Ouyang. 2010. gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 160: 574-582. https://doi.org/10.1007/s12010-008-8431-9
  30. Martinez, D., L. F. Larrondo, N. Putnam, M. D. Sollewijn- Gelpke, K. Huang, J. Chapman, et al. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnol. 22: 695-700. https://doi.org/10.1038/nbt967
  31. Mussatto, S. I., M. Fernandes, A. M. F. Milagres, and I. C. Roberto. 2008. Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme Microb. Technol. 43: 124-129. https://doi.org/10.1016/j.enzmictec.2007.11.006
  32. Nigam, J. N. 2001. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J. Biotechnol. 87: 17-27. https://doi.org/10.1016/S0168-1656(00)00385-0
  33. Nguyen, M. T., S. P. Choi, J. Lee, J. H. Lee, and S. J. Sim. 2009. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 19: 161-166. https://doi.org/10.4014/jmb.0810.578
  34. Okuyama, M., A. Kaneko, H. Mori, S. Chiba, and A. Kimura. 2005. Structural elements to convert Escherichia coli alpha xylosidase (YicI) into alpha-glucosidase. FEBS Lett. 580: 2707- 2711.
  35. Park, Y. W. and H. D. Yun. 1999. Cloning of the Escherichia coli endo-1,4-D-glucanase gene and identification of its product. Mol. Gen. Genet. 261: 236-241. https://doi.org/10.1007/s004380050962
  36. Pordesimo, L. O., B. R. Hames, S. Sokhansanj, and W. C. Edens. 2005. Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 28: 366-374. https://doi.org/10.1016/j.biombioe.2004.09.003
  37. Ramos, L. P. 2003. The chemistry involved in the steam pretreatment of lignocellulosic materials. Quim. Nova 26: 863- 871. https://doi.org/10.1590/S0100-40422003000600015
  38. Rasmussen, M. L., P. Shrestha, S. K. Khanal, A. L. Pometto III, and J. (Hans) van Leeuwen. 2010. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour. Technol. 101: 3526-3533. https://doi.org/10.1016/j.biortech.2009.12.115
  39. Salaspuro, V., S. Nyfors, R. Heine, A. Siitonen, M. Salaspuro, and H. Jousimies-Somer. 1999. Ethanol oxidation and acetaldehyde production in vitro by human intestinal strains of Escherichia coli under aerobic, microaerobic, and anaerobic conditions. Scand. J. Gastroenterol. 34: 967-973. https://doi.org/10.1080/003655299750025057
  40. Sanchez, C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185-194. https://doi.org/10.1016/j.biotechadv.2008.11.001
  41. Saqib, A. A. N. and P. J. Whitney. 2006. Role of fragmentation activity in cellulose hydrolysis. Int. Biodeterior. Biodegrad. 58: 180-185. https://doi.org/10.1016/j.ibiod.2006.06.007
  42. Selig, M. J., T. B. Vinzant, M. E. Himmel, and S. R. Decker. 2009. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol. 155: 397-406.
  43. Shrestha, P., M. Rasmussen, S. K. Khanal, A. L. Pometto III, and J. (Hans) van Leeuwen. 2008. Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J. Agric. Food Chem. 56: 3918-3924. https://doi.org/10.1021/jf0728404
  44. Shrestha, P., S. K. Khanal, A. L. Pometto III, and J. (Hans) van Leeuwen. 2009. Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by hydrolysate fermentation to ethanol. J. Agric. Food Chem. 57: 4156-4161. https://doi.org/10.1021/jf900345n
  45. Shrestha, P., S. K. Khanal, A. L. Pometto, and J. (Hans) van Leeuwen. 2010. Ethanol production via in situ fungal saccharification and fermentation of mild alkali and steam pretreated corn fiber. Bioresour. Technol. 101: 8698-8705. https://doi.org/10.1016/j.biortech.2010.06.089
  46. Sokhansanj, S., A. Turhollow, J. Cushman, and J. Cundi. 2002. Engineering aspects of collecting corn stover for bioenergy. Biomass Bioenergy 23: 347-355. https://doi.org/10.1016/S0961-9534(02)00063-6
  47. Sorensen, A., P. J. Teller, T. Hilstrom, and B. K. Ahring. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresour. Technol. 99: 6602-6607. https://doi.org/10.1016/j.biortech.2007.09.091
  48. Su, D., J. Sun, P. Liu, and Y. Lu. 2006. Effects of different pretreatment modes on the enzymatic digestibility of corn leaf and corn stalk. Chin. J. Chem. Eng. 14: 796-801. https://doi.org/10.1016/S1004-9541(07)60014-7
  49. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  50. Suzuki, H., K. Igarashi, and M. Samejima. 2008. Real-time quantitative analysis of carbon catabolite derepression of cellulolytic genes expressed in the basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 80: 99-106. https://doi.org/10.1007/s00253-008-1539-6
  51. Varga, E., H. B. Klinke, K. Rczey, and A. B. Thomsen. 2004. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol. Bioeng. 88: 567-574. https://doi.org/10.1002/bit.20222
  52. Vogel, K. P., J. F. Pedersen, S. D. Masterson, and J. J. Toy. 1999. Evaluation of a filter bag system for NDF, ADF and IVDMD forage analysis. Crop Sci. 39: 276-279. https://doi.org/10.2135/cropsci1999.0011183X003900010042x
  53. Weiss, N. D., J. D. Farmer, and D. J. Schell. 2010. Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bioresour. Technol. 101: 674-678. https://doi.org/10.1016/j.biortech.2009.08.082
  54. Wymelenberg, A. V., G. Sabat, B. Martinez, A. S. Rajangam, T. T. Teeri, J. Gaskell, P. J. Kersten, and D. Cullen. 2005. The Phanerochaete chrysosporium secretome: Database predictions and initial mass spectrometry peptide identifications in cellulosegrown medium. J. Biotechnol. 118: 17-34. https://doi.org/10.1016/j.jbiotec.2005.03.010
  55. Yang, B., D. M. Willies, and C. E. Wyman. 2006. Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol. Bioeng. 94: 1122-1128. https://doi.org/10.1002/bit.20942
  56. Yang, C. P., Z. Q. Shen, G. Yu, and J. L. Wang. 2008. Effect and after effect of radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresour. Technol. 99: 6240-6245. https://doi.org/10.1016/j.biortech.2007.12.008
  57. Yu, J., J. Zhang, J. He, Z. Liu, and Z. Yu. 2009. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour. Technol. 100: 903-908. https://doi.org/10.1016/j.biortech.2008.07.025

Cited by

  1. Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time vol.22, pp.12, 2011, https://doi.org/10.4014/jmb.1206.06058
  2. Construction of a Recombinant Escherichia coli JM109/A-68 for Production of Carboxymethylcellulase and Comparison of Its Production with Its Wild type, Bacillus velezensis A-68 in a Pilot-scale Biorea vol.21, pp.5, 2011, https://doi.org/10.1007/s12257-016-0468-y
  3. Lignocellulosic biofuel production: review of alternatives vol.10, pp.3, 2011, https://doi.org/10.1007/s13399-019-00445-x