DOI QR코드

DOI QR Code

Isolation and Characterization of a Mesophilic Arthrospira maxima Strain Capable of Producing Docosahexaenoic Acid

  • Hu, Hongjun (Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences) ;
  • Li, Yeguang (Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences) ;
  • Yin, Chuntao (Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences) ;
  • Ouyang, Yexin (Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences)
  • Received : 2011.01.03
  • Accepted : 2011.04.05
  • Published : 2011.07.28

Abstract

A strain of the cyanobacterium Arthrospira was isolated from Lake Chahannaoer in northern China and was characterized according to microscopic morphology, photosynthetic oxygen-evolving activity, growth rate, and nutritional profile. Compared with thermophilic Arthrospira species occurring naturally in tropical and subtropical lakes, this isolate is mesophilic and grows optimally at ${\sim}20^{\circ}C$. The total protein, fatty acid, phycocyanin, carotenoid, and chlorophyll a contents were 67.6, 6.1, 4.32, 0.29, and 0.76 grams per 100 grams of dry weight, respectively. The strain is rich in polyunsaturated fatty acids (PUFAs). An essential omega-3 fatty acid, docosahexaenoic acid (DHA), was detected, and ${\gamma}$-linolenic acid (GLA) and DHA accounted for 28.3% of the total fatty acid content. These features of this newly isolated strain make it potentially useful in commercial mass culture in local areas or as a biofuel feedstock. It is also an alternative resource for studying the metabolic PUFA pathways and mechanisms of cold stress tolerance in cyanobacteria.

Keywords

References

  1. Ananyev, G., D. Carrieri, and G. C. Dismukes. 2008. Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium Arthrospira (Spirulina) maxima. Appl. Environ. Microbiol. 74: 6102-6113. https://doi.org/10.1128/AEM.01078-08
  2. Apt, K. E. and P. W. Behrens. 1999. Commercial developments in microalgal biotechnology. J. Phycol. 35: 215-226. https://doi.org/10.1046/j.1529-8817.1999.3520215.x
  3. Behrens, P. W. and D. J. Kyle. 1996. Microalgae as a source of fatty acids. J. Food Lipids 3: 259-272. https://doi.org/10.1111/j.1745-4522.1996.tb00073.x
  4. Belay, A. 2008. Spirulina (Arthrospira): Production and quality assurance, pp. 1-25. In M. E. Gershwin and A. Belay (eds.). Spirulina in Human Nutrition and Health. CRC Press, London/ New York.
  5. Carreau, J. P. and J. P. Dubacq. 1978. Adaptation of a macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts. J. Chromatogr. 151: 384-390. https://doi.org/10.1016/S0021-9673(00)88356-9
  6. Choi, G.-G., M.-S. Bae, C.-Y. Ahn, and H.-M. Oh. 2008. Enhanced biomass and γ-linolenic acid production of mutant strain Arthrospira platensis. J. Microbiol. Biotechnol. 18: 539-544.
  7. Ciferri, O. 1983. Spirulina, the edible microorganism. Microbiol. Rev. 47: 551-578.
  8. Ciferri, O. and O. Tiboni. 1985. The biochemistry and industrial potential of Spirulina. Annu. Rev. Microbiol. 89: 503-526.
  9. Cohen, Z., H. A. Norman, and Y. M. Heimer. 1995. Microalgae as a source of omega-3 fatty acids. World Rev. Nutr. Diet 77: 1-31.
  10. Colla, L. M., C. O. Reinehr, C. Reichert, and J. A. V. Costa. 2007. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 98: 1489-1493. https://doi.org/10.1016/j.biortech.2005.09.030
  11. Ethier, S., K. Woisard, D. Vaughan, and Z. Wen. 2011. Continuous culture of the microalgae Schizochytrium limacinum on biodieselderived crude glycerol for producing docosahexaenoic acid. Bioresour. Technol. 102: 88-93. https://doi.org/10.1016/j.biortech.2010.05.021
  12. Franke, H., M. Springer, O. Pulz, U. Tietz, and U. Mueller. 1994. Polyunsaturated fatty acids from microalgae. Int. Food Ingred. 4: 41-45.
  13. Gotz, T., U. Windhovel, P. Böger, and G. Sandmann. 1999. Protection of photosynthesis against ultraviolet-B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC7942. Plant Physiol. 120: 599-604. https://doi.org/10.1104/pp.120.2.599
  14. Grima, E. M., R. A. Medina, and G. A. Gimenez. 1999. Recovery of algal PUFAs, pp. 108-144. In Z. Cohen (ed.). Chemicals from Microalgae. Taylor & Francis, London.
  15. Herbert, D., P. J. Phipps, and R. E. Strange. 1971. Chemical analysis of microbial cells, pp. 209-344. In J. R. Norris and D. W. Ribbons (eds.). Method in Microbiology. Academic Press, London/New York.
  16. Hu, H. 2003. The Biology and Biotechnology of Spirulina (Arthrospira) [in Chinese]. Science Press (co-published with Springer-Verlag GmbH), Beijing.
  17. Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins. 2008. Microalgal triacylglycerols as feed stocks for biofuel production: Perspectives and advances. Plant J. 54: 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  18. Jenski, L. J. and W. Stillwell. 2001. Role of docosahexaenoic acid in determing membrane structure and function, pp. 41-62. In D. Mostofsky, S. Yehuda, and N. Jr. Salem (eds.). Fatty Acids: Physiological and Behavioral Functions. Humana Press Inc., Totowa, NJ.
  19. Kanazawa, A. 1997. Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish. Aquaculture 155: 129- 134. https://doi.org/10.1016/S0044-8486(97)00123-3
  20. Li, D. M. and Y. Z. Qi. 1997. Spirulina industry in China: Present status and future prospects. J. Appl. Phycol. 9: 25-28. https://doi.org/10.1023/A:1007973823532
  21. Lu, Y. M., W. Z. Xiang, and Y. H. Wen. 2010. Spirulina (Arthrospira) industry in Inner Mongolia of China: Current status and prospects. J. Appl. Phycol. 23: 265-269.
  22. Mutanda T., D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj, and F. Bux. 2011. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 102: 57-70. https://doi.org/10.1016/j.biortech.2010.06.077
  23. Muhling, M., A. Belay, and B. A. Whitton. 2005. Variation in fatty acid composition of Arthrospira (Spirulina) strains. J. Appl. Phycol. 17: 137-146. https://doi.org/10.1007/s10811-005-7213-9
  24. Rupp, H., P. T. Rupp, D. Wagner, P. Alter, and B. Maisch. 2006. Microdetermination of fatty acids by gas chromatography and cardiovascular risk stratification by the "EPA+DHA level", pp.47-79. In B. Maisch and R. Oelze (eds.). Cardiovascular Benefits of Omega-3 Polyunsaturated Fatty Acids. IOS Press, Amsterdam.
  25. Sanghvi, A. M. and Y. M. Lo. 2010. Present and potential industrial applications of macro- and microalgae. Recent Pat. Food Nutr. Agric. 2: 187-194.
  26. Tanticharoen, M., M. Reungjitchachawali, B. Boonag, P. Vonktaveesuk, A. Vonshak, and Z. Cohen. 1994. Optimization of gamma-linolenic acid (GLA) production in Spirulina platensis. J. Appl. Phycol. 6: 295-300. https://doi.org/10.1007/BF02181942
  27. Tomaselli, L., L. Giovannetti, A. Sacchi, and F. Bocci. 1988. Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2, pp. 303-314. In T. Stadler, J. Mellion, M. C. Verdus, Y. Karamanos, H. Morvan, and D. Christiaen (eds.). Algal Biotechnology. Elsevier Applied Science, London.
  28. Vonshak, A. 1997. Spirulina: Growth, physiology and biochemistry, pp. 175-204. In A. Vonshak (ed.). Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis Ltd., London.
  29. Wada, H., Z. Gombos, and N. Murata. 1994. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc. Natl. Acad. Sci. USA 91: 4273-4277. https://doi.org/10.1073/pnas.91.10.4273
  30. Yin, C., H. Hu, X. Gong, and Y. Geng. 1997. Effects of cultural conditions on fatty acid composition and content in Spirulina platensis. J. Wuhan Bot. Res. 15: 59-65.
  31. Yin, C., H. Hu, Y. Li, X. Gong, and D. Shi. 1997. Studies on middle temperature strains selection of Spirulina platensis. J. Wuhan Bot. Res. 15: 250-254.
  32. Yurko-Mauro, K. 2010. Cognitive and cardiovascular benefits of docosahexaenoic acid in aging and cognitive decline. Curr. Alzheimer Res. 7: 190-196. https://doi.org/10.2174/156720510791050911
  33. Zarrouk, C. 1966. Contribution a l'etude d'une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitl. These de Doctorat d'Etat, Universite de Paris, France.
  34. Zheng, X., M. Zhang, J. Dong, Z. Gao, C. Xu, Z. Han, B. Zhang, D. Sun, and K. Wang. 1992. The Salt Lakes in Inner Mongolia, China [in Chinese], pp. 248-250. Science Press, Beijing, China.

Cited by

  1. Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus vol.26, pp.1, 2011, https://doi.org/10.1007/s10811-013-0119-z
  2. Recent developments in the fungal transformation of steroids vol.33, pp.1, 2015, https://doi.org/10.3109/10242422.2015.1022533
  3. Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds vol.32, pp.6, 2011, https://doi.org/10.1016/j.nbt.2015.02.001
  4. A Comprehensive Overview on Microalgal-Fortified/Based Food and Beverages vol.35, pp.8, 2011, https://doi.org/10.1080/87559129.2019.1608557
  5. Investigation of nutraceutical potential of the microalgae Chlorella vulgaris and Arthrospira platensis vol.55, pp.1, 2011, https://doi.org/10.1111/ijfs.14278