References
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Asselbergh, B., D. De Vleesschauwer, and M. Höfte. 2008. Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol. Plant Microbe Interact. 21: 709-719. https://doi.org/10.1094/MPMI-21-6-0709
- Bais, H. P., S. W. Park, T. L. Weir, R. M. Callaway, and J. M. Vivanco. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26-32. https://doi.org/10.1016/j.tplants.2003.11.008
- Barrow, J. R. and P. Osuna. 2002. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J. Arid Environ. 51: 449-459. https://doi.org/10.1006/jare.2001.0925
- Beckers, G. J. and S. H. Spoel. 2006. Fine-tuning plant defence signalling: Salicylate versus jasmonate. Plant Biol. (Stuttg). 8: 1-10. https://doi.org/10.1055/s-2005-872705
- Bent, E. 2006. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF), pp. 225-258. In S. Tuzun and E. Bent (eds.). Multigenic and Induced Systemic Resistance in Plants. Springer-Verlag, New York.
- Berrios, J., A. Illanes, and G. Aroca. 2004. Spectrophotometric method for determining gibberellic acid in fermentation broths. Biotech. Lett. 26: 67-70. https://doi.org/10.1023/B:BILE.0000009463.98203.8b
- Bostock, R. M. 2005. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43: 545-580. https://doi.org/10.1146/annurev.phyto.41.052002.095505
- Colon-Carmona, A., R. You, T. Haimovitch-Gal, and P. Doerner. 1999. Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 20: 503-508. https://doi.org/10.1046/j.1365-313x.1999.00620.x
- Contreras-Cornejo, H. A., R. L. Macias, P. C. Cortés, and J, Lopez-Bucio. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149: 1579-1592. https://doi.org/10.1104/pp.108.130369
- Costacurta, A. and J. Vanderleyden. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21: 1-18. https://doi.org/10.3109/10408419509113531
- Cuppels, D. A. 1986. Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 51: 323-327.
- Dong, X. 2001. Genetic dissection of systemic acquired resistance. Curr. Opin. Plant Biol. 4: 309-314. https://doi.org/10.1016/S1369-5266(00)00178-3
- Falasca, G., D. Zaghi, M. Possenti, and M. M. Altamura. 2004. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep. 23: 17-25.
- Ferreira, P. C., A. Hemerly, M. van Montagu, and D. Inzé. 1994. Control of cell proliferation during plant development. Plant Mol. Biol. 26: 1289-1303. https://doi.org/10.1007/BF00016475
- Finkelstein, R. R. 1994. Mutation at two new Arabidopsis ABA response loci is similar to the abi3 mutations. Plant J. 5: 765- 771. https://doi.org/10.1046/j.1365-313X.1994.5060765.x
- Glazebrook, J., W. Chen, B. Estes, H. S. Chang, C. Nawrath, J. P. Métraux, T. Zhu, and F. Katagiri. 2003. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 34: 217-228. https://doi.org/10.1046/j.1365-313X.2003.01717.x
- Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 763-796.
- Harman, G. E., C. R. Howell, A. Viterbo, I. Chet, and M. Lorito. 2004. Trichoderma species - Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56. https://doi.org/10.1038/nrmicro797
- Higuchi, M., S. M. Pischke, P. A. Mähöne, K. Miyawaki, Y. Hashimoto, M. Seki, et al. 2004. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. USA 101: 8821-8826. https://doi.org/10.1073/pnas.0402887101
- Himanen, K., E. Boucheron, S. Vanneste, E. J. de Almeida, D. Inze, and T. Beeckman. 2002. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14: 2339-2351. https://doi.org/10.1105/tpc.004960
- Hobbie, L. and E. Estelle. 1995. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7: 211-220. https://doi.org/10.1046/j.1365-313X.1995.7020211.x
- Hossain, M. Md., F. Sultana, M. Kubota, H. Koyama, and M. Hyakumachi. 2007. The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol. 48: 1724-1736. https://doi.org/10.1093/pcp/pcm144
- Hua, J. and E. Meyerowitz. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 262-271.
- Jefferson, A. R., A. T. Kavanagh, and W. M. Bevan. 1987. GUS fusions: Beta-glucuronidase as a sensitive and gene fusion marker in higher plants. EMBO J. 6: 3901-3907.
- Kazan, K. and J. M. Manners. 2009. Linking development to defense: Auxin in plant-pathogen interactions. Trends Plant Sci. 14: 373-382. https://doi.org/10.1016/j.tplants.2009.04.005
- King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307.
- Lucero, M. E., J. R. Barrow, P. Osuna, I. Reyes, and S. E. Duke. 2006. Enhancing native grass productivity by cocultivating with endophyte-laden calli. Rangel. Ecol. Manage. 61: 124-130.
- Lugtenberg, B. and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
- Luschnig, C., A. R. Gaxiola, P. Grisafi, R. Gerald, and R. G. Fink. 1998. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12: 2175-2187. https://doi.org/10.1101/gad.12.14.2175
- Masucci, J. D. and W. J. Schiefelbein. 1994. The rhd6 mutation of Arabidopsis thaliana alters root hair initiation through an auxin and ethylene associated process. Plant Physiol. 106: 1335-1346. https://doi.org/10.1104/pp.106.4.1335
- Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Nishimura, C., Y. Ohashi, S. Sato, T. Kato, S. Tabata, and C. Ueguchi. 2004. Genetic analysis of Arabidopsis histidine kinase genes encoding cytokinin receptors reveals their overlapping biological functions in the regulation of shoot and root growth in Arabidopsis thaliana. Plant Cell 16: 1365-1377. https://doi.org/10.1105/tpc.021477
- Pickett, B. F., K. A. Wilson, and M. Estelle. 1990. The auxin mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol. 94: 1462-1466. https://doi.org/10.1104/pp.94.3.1462
- Pieterse, J. M. C., A. Leon-Reyes, S. Van dern Ent, and S. C. M. Van Wees. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5: 308-316. https://doi.org/10.1038/nchembio.164
- Pozo, M. J. and C. Azcón-Aguilar. 2007. Unraveling mycorrhizainduced resistance. Curr. Opin. Plant Biol. 10: 393-398. https://doi.org/10.1016/j.pbi.2007.05.004
- Raeder, U. and P. Broda. 1989. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1: 17-20.
- Schenk, P. M., K. Kazan, I. Wilson, J. P. Anderson, T. Richmond, S. C. Somerville, and J. M. Manners. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655-11660. https://doi.org/10.1073/pnas.97.21.11655
- Shani, E., O. Yanai, and N. Ori. 2006. The role of hormones in shoot apical meristem function. Curr. Opin. Plant Biol. 9: 484- 489. https://doi.org/10.1016/j.pbi.2006.07.008
- Spoel, S., J. Johnson, and X. Dong. 2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 104: 8842- 18847.
- Spoel, S., A. koornneef, S. Laessens, J. Korzelius, J. Van Pelt, M. Mueller, et al. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760-770. https://doi.org/10.1105/tpc.009159
- Spoel, S. H. and X. Dong. 2008. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3: 348-351. https://doi.org/10.1016/j.chom.2008.05.009
- Stals, H. and D. Inzé. 2001. When plant cells decide to divide. Trends Plant Sci. 6: 359-364. https://doi.org/10.1016/S1360-1385(01)02016-7
- Tsavkelova, E. A., S. Y. Klimova, T. A. Cherdyntseva, and A. I. Netrusov. 2006. Microbial producers of plant growth stimulators and their practical use: A review. Appl. Biochem. Microbiol. 42: 117-126. https://doi.org/10.1134/S0003683806020013
- Ulmasov, T., J. Murfett, G. Hagen, and T. Guilfoyle. 1997. Aux/ IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963-1971. https://doi.org/10.1105/tpc.9.11.1963
- White, T. J., T. Brunts, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc. New York.
- Woodward, A. W. and B. Bartel. 2005. Auxin: Regulation, action, and interaction. Annu. Bot. 95: 707-735. https://doi.org/10.1093/aob/mci083
Cited by
- Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions vol.36, pp.5, 2013, https://doi.org/10.1111/pce.12036
- Chilli rhizosphere fungus Aspergillus spp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation vol.47, pp.10, 2011, https://doi.org/10.1080/03235408.2013.837633
- Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture vol.62, pp.2, 2011, https://doi.org/10.1007/s13199-014-0273-3
- Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato vol.166, pp.3, 2011, https://doi.org/10.1111/aab.12199
- Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots vol.16, pp.1, 2011, https://doi.org/10.1186/s12864-014-1208-3
- In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0143353
- Plant-fungal interactions: What triggers the fungi to switch among lifestyles? vol.42, pp.3, 2011, https://doi.org/10.3109/1040841x.2014.958052
- Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile Compounds vol.11, pp.12, 2011, https://doi.org/10.1371/journal.pone.0168236
- Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects vol.163, pp.7, 2017, https://doi.org/10.1099/mic.0.000494
- Investigation on biosuppression of Fusarium crown and root rot of tomato (Solanum lycopersicum L.) and growth promotion using fungi naturally associated to Solanum linnaeanum L. vol.12, pp.7, 2011, https://doi.org/10.5897/ajmr2017.8777
- Preliminary Study of Hyptis pectinata (L.) Poit Extract Biotransformation by Aspergillus niger vol.349, pp.None, 2018, https://doi.org/10.1088/1757-899x/349/1/012004
- Isolation and Characterization of Mercury Resistant Trichoderma Strains from Soil with High Levels of Mercury and Its Effects on Arabidopsis thaliana Mercury Uptake vol.8, pp.7, 2018, https://doi.org/10.4236/aim.2018.87040
- A resourceful methodology to profile indolic auxins produced by rhizo-fungi using spectrophotometry and HPTLC vol.8, pp.10, 2011, https://doi.org/10.1007/s13205-018-1428-3
- Strategy Role of Mycorrhiza Inoculation on Osmotic Pressure, Chemical Constituents and Growth Yield of Maize Plant Gown under Drought Stress vol.10, pp.6, 2019, https://doi.org/10.4236/ajps.2019.106080
- Tobacco Growth Promotion by the Entomopathogenic Fungus, Isaria javanica pf185 vol.47, pp.1, 2011, https://doi.org/10.1080/12298093.2018.1562692
- Growth-promoting bioactivities of Bipolaris sp. CSL-1 isolated from Cannabis sativa suggest a distinctive role in modifying host plant phenotypic plasticity and functions vol.41, pp.5, 2011, https://doi.org/10.1007/s11738-019-2852-7
- No evidence of modulation of indirect plant resistance of Brassica rapa plants by volatiles from soil‐borne fungi vol.45, pp.5, 2011, https://doi.org/10.1111/een.12906
- Exploration of microbial stimulants for induction of systemic resistance in plant disease management vol.177, pp.3, 2011, https://doi.org/10.1111/aab.12631
- Indole-3-Acetic Acid Is Synthesized by the Endophyte Cyanodermella asteris via a Tryptophan-Dependent and -Independent Way and Mediates the Interaction with a Non-Host Plant vol.22, pp.5, 2011, https://doi.org/10.3390/ijms22052651
- Bioprospecting of Rhizosphere-Resident Fungi: Their Role and Importance in Sustainable Agriculture vol.7, pp.4, 2011, https://doi.org/10.3390/jof7040314
- Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus vol.11, pp.7, 2011, https://doi.org/10.3390/metabo11070428