References
- Bart, A., M. W. J. van Passel, K. van Amsterdam, and A. van der Ende. 2005. Direct detection of methylation in genomic DNA. Nucleic Acids Res. 33: e124. https://doi.org/10.1093/nar/gni121
- Enriquez, L. L., M. V. Mendes, N. Anton, S. Tunca, S. M. Guerra, J. F. Martín, and J. F. Aparicio. 2006. An efficient gene transfer system for the pimaricin producer Streptomyces natalensis. FEMS Microbiol. Lett. 257: 312-318. https://doi.org/10.1111/j.1574-6968.2006.00189.x
- Flusberg, B. A., D. R. Webster, J. H. Lee, K. J. Travers, E. C. Olivares, T. A. Clark, J. Korlach, and S. W. Turner. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7: 461-465. https://doi.org/10.1038/nmeth.1459
- Gehrke, C. W., R. A. McCune, M. A. Gamasosa, M. Ehrlich, and K. C. Kuo. 1984. Quantitative reversed-phase high-performance liquid-chromatography of major and modified nucleosides in DNA. J. Chromatogr. 301: 199-219. https://doi.org/10.1016/S0021-9673(01)89189-5
- Gonzalez-Ceron, G., O. J. Miranda-Olivares, and L. Servin- Gonzalez. 2009. Characterization of the methyl-specific restriction system of Streptomyces coelicolor A3(2) and of the role played by laterally acquired nucleases. FEMS Microbiol. Lett. 301: 35-43. https://doi.org/10.1111/j.1574-6968.2009.01790.x
- Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, et al. 1985. Genetic Manipulation in Streptomyces: A Laboratory Manual. The John Innes Foundation, Norwich.
- Kwak, J., H. Jiang, and K. E. Kendrick. 2002. Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol. Lett. 209: 243-248. https://doi.org/10.1111/j.1574-6968.2002.tb11138.x
- MacNeil, D. J. 1988. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J. Bacteriol. 170: 5607-5612. https://doi.org/10.1128/jb.170.12.5607-5612.1988
- Oakeley, E. J. 1999. DNA methylation analysis: A review of current methodologies. Pharmacol. Ther. 84: 389-400. https://doi.org/10.1016/S0163-7258(99)00043-1
- Ohnishi, Y., J. Ishikawa, H. Hara, H. Suzuki, M. Ikenoya, H. Ikeda, A. Yamashita, M. Hattori, and S. Horinouchi. 2008. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190: 4050-4060. https://doi.org/10.1128/JB.00204-08
- Roberts, R. J., M. Belfort, T. Bestor, A. S. Bhagwat, T. A. Bickle, J. Bitinaite, et al. 2003. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 31: 1805-1812. https://doi.org/10.1093/nar/gkg274
- Roberts, R. J., T. Vincze, J. Posfai, and D. Macelis. 2010. REBASE - a database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Res. 38: D234- D236. https://doi.org/10.1093/nar/gkp874
- Vara, J., M. Lewandowska-Skarbek, Y.-G. Wang, S. Donadio, and C. R. Hutchinson. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881. https://doi.org/10.1128/jb.171.11.5872-5881.1989
- Zotchev, S. B., H. Schrempf, and C. R. Hutchinson. 1995. Identification of a methyl-specific restriction system mediated by a conjugative element from Streptomyces bambergiensis. J. Bacteriol. 177: 4809-4812. https://doi.org/10.1128/jb.177.16.4809-4812.1995
Cited by
- Genetic Transformation of Geobacillus kaustophilus HTA426 by Conjugative Transfer of Host-Mimicking Plasmids vol.22, pp.9, 2012, https://doi.org/10.4014/jmb.1203.03023
- Towards a new science of secondary metabolism vol.66, pp.7, 2013, https://doi.org/10.1038/ja.2013.25
- An alternative sigma factor governs the principal sigma factor in Streptomyces griseus vol.87, pp.6, 2011, https://doi.org/10.1111/mmi.12160
- Two Glycine Riboswitches Activate the Glycine Cleavage System Essential for Glycine Detoxification in Streptomyces griseus vol.196, pp.7, 2014, https://doi.org/10.1128/jb.01480-13
- Conjugative plasmid transfer from Escherichia coli is a versatile approach for genetic transformation of thermophilic Bacillus and Geobacillus species vol.20, pp.3, 2011, https://doi.org/10.1007/s00792-016-0819-9
- Comprehensive identification of 5-methylcytosines in Frankia genomes vol.70, pp.1, 2011, https://doi.org/10.1007/s13199-016-0384-0
- Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era vol.35, pp.6, 2011, https://doi.org/10.1039/c8np00012c
- Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems vol.46, pp.9, 2011, https://doi.org/10.1007/s10295-019-02218-x
- CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria vol.4, pp.12, 2019, https://doi.org/10.1038/s41564-019-0573-8
- A plasmid vector that directs hyperproduction of recombinant proteins in the thermophiles Geobacillus species vol.24, pp.1, 2011, https://doi.org/10.1007/s00792-019-01142-3