DOI QR코드

DOI QR Code

Improvement of Transformation Efficiency by Strategic Circumvention of Restriction Barriers in Streptomyces griseus

  • Suzuki, Hirokazu (Chemical Biology Department, Advanced Science Institute, RIKEN) ;
  • Takahashi, Shunji (Chemical Biology Department, Advanced Science Institute, RIKEN) ;
  • Osada, Hiroyuki (Chemical Biology Department, Advanced Science Institute, RIKEN) ;
  • Yoshida, Ken-Ichi (Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University)
  • Received : 2011.02.28
  • Accepted : 2011.04.13
  • Published : 2011.07.28

Abstract

DNA methylation in Streptomyces griseus IFO 13350 was analyzed by high-performance liquid chromatographic analysis and bisulfite-based analysis to reveal two methylation sites, 5'-$GC^{5m}$ CGGC-3' and 5'-$GAG^{5m}$ CTC-3'. The methylation was reconstituted in Escherichia coli by simultaneous expression of S. griseus SGR4675 and S. achromogenes M.SacI. The E. coli cells produced plasmids that mimicked the methylation profile of S. griseus DNA, which was readily introduced into S. griseus. The results of this study raise the possibility of a promising approach to establish efficient transformation in several streptomycetes.

Keywords

References

  1. Bart, A., M. W. J. van Passel, K. van Amsterdam, and A. van der Ende. 2005. Direct detection of methylation in genomic DNA. Nucleic Acids Res. 33: e124. https://doi.org/10.1093/nar/gni121
  2. Enriquez, L. L., M. V. Mendes, N. Anton, S. Tunca, S. M. Guerra, J. F. Martín, and J. F. Aparicio. 2006. An efficient gene transfer system for the pimaricin producer Streptomyces natalensis. FEMS Microbiol. Lett. 257: 312-318. https://doi.org/10.1111/j.1574-6968.2006.00189.x
  3. Flusberg, B. A., D. R. Webster, J. H. Lee, K. J. Travers, E. C. Olivares, T. A. Clark, J. Korlach, and S. W. Turner. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7: 461-465. https://doi.org/10.1038/nmeth.1459
  4. Gehrke, C. W., R. A. McCune, M. A. Gamasosa, M. Ehrlich, and K. C. Kuo. 1984. Quantitative reversed-phase high-performance liquid-chromatography of major and modified nucleosides in DNA. J. Chromatogr. 301: 199-219. https://doi.org/10.1016/S0021-9673(01)89189-5
  5. Gonzalez-Ceron, G., O. J. Miranda-Olivares, and L. Servin- Gonzalez. 2009. Characterization of the methyl-specific restriction system of Streptomyces coelicolor A3(2) and of the role played by laterally acquired nucleases. FEMS Microbiol. Lett. 301: 35-43. https://doi.org/10.1111/j.1574-6968.2009.01790.x
  6. Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, et al. 1985. Genetic Manipulation in Streptomyces: A Laboratory Manual. The John Innes Foundation, Norwich.
  7. Kwak, J., H. Jiang, and K. E. Kendrick. 2002. Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol. Lett. 209: 243-248. https://doi.org/10.1111/j.1574-6968.2002.tb11138.x
  8. MacNeil, D. J. 1988. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J. Bacteriol. 170: 5607-5612. https://doi.org/10.1128/jb.170.12.5607-5612.1988
  9. Oakeley, E. J. 1999. DNA methylation analysis: A review of current methodologies. Pharmacol. Ther. 84: 389-400. https://doi.org/10.1016/S0163-7258(99)00043-1
  10. Ohnishi, Y., J. Ishikawa, H. Hara, H. Suzuki, M. Ikenoya, H. Ikeda, A. Yamashita, M. Hattori, and S. Horinouchi. 2008. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190: 4050-4060. https://doi.org/10.1128/JB.00204-08
  11. Roberts, R. J., M. Belfort, T. Bestor, A. S. Bhagwat, T. A. Bickle, J. Bitinaite, et al. 2003. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 31: 1805-1812. https://doi.org/10.1093/nar/gkg274
  12. Roberts, R. J., T. Vincze, J. Posfai, and D. Macelis. 2010. REBASE - a database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Res. 38: D234- D236. https://doi.org/10.1093/nar/gkp874
  13. Vara, J., M. Lewandowska-Skarbek, Y.-G. Wang, S. Donadio, and C. R. Hutchinson. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881. https://doi.org/10.1128/jb.171.11.5872-5881.1989
  14. Zotchev, S. B., H. Schrempf, and C. R. Hutchinson. 1995. Identification of a methyl-specific restriction system mediated by a conjugative element from Streptomyces bambergiensis. J. Bacteriol. 177: 4809-4812. https://doi.org/10.1128/jb.177.16.4809-4812.1995

Cited by

  1. Genetic Transformation of Geobacillus kaustophilus HTA426 by Conjugative Transfer of Host-Mimicking Plasmids vol.22, pp.9, 2012, https://doi.org/10.4014/jmb.1203.03023
  2. Towards a new science of secondary metabolism vol.66, pp.7, 2013, https://doi.org/10.1038/ja.2013.25
  3. An alternative sigma factor governs the principal sigma factor in Streptomyces griseus vol.87, pp.6, 2011, https://doi.org/10.1111/mmi.12160
  4. Two Glycine Riboswitches Activate the Glycine Cleavage System Essential for Glycine Detoxification in Streptomyces griseus vol.196, pp.7, 2014, https://doi.org/10.1128/jb.01480-13
  5. Conjugative plasmid transfer from Escherichia coli is a versatile approach for genetic transformation of thermophilic Bacillus and Geobacillus species vol.20, pp.3, 2011, https://doi.org/10.1007/s00792-016-0819-9
  6. Comprehensive identification of 5-methylcytosines in Frankia genomes vol.70, pp.1, 2011, https://doi.org/10.1007/s13199-016-0384-0
  7. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era vol.35, pp.6, 2011, https://doi.org/10.1039/c8np00012c
  8. Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems vol.46, pp.9, 2011, https://doi.org/10.1007/s10295-019-02218-x
  9. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria vol.4, pp.12, 2019, https://doi.org/10.1038/s41564-019-0573-8
  10. A plasmid vector that directs hyperproduction of recombinant proteins in the thermophiles Geobacillus species vol.24, pp.1, 2011, https://doi.org/10.1007/s00792-019-01142-3