참고문헌
- Bajpai, P. 1999. Application of enzymes in the pulp and paper industry. Biotechnol. Prog. 15: 147-157. https://doi.org/10.1021/bp990013k
- Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Caballero, P. A., M. Gómez, and C. M. Rosell. 2007. Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination. J. Food Process Eng. 81: 42-53. https://doi.org/10.1016/j.jfoodeng.2006.10.007
- Christov, L. P., G. Szakacs, and H. Balakrishnan. 1999. Production, partial characterization and use of fungal cellulase-free xylanases in pulp bleaching. Process Biochem. 34: 511-517. https://doi.org/10.1016/S0032-9592(98)00117-4
- Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- Gallardo, O., P. Diaz, and F. I. J. Pastor. 2003. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: A new subclass of family 10 xylanases. Appl. Microbiol. Biotechnol. 61: 226-233. https://doi.org/10.1007/s00253-003-1239-1
- Gibbs, M. D., R. A. Reeves, and P. L. Bergquist. 1995. Cloning, sequencing, and expression of a xylanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B. 1 and activity of the enzyme on fiber-bound substrate. Appl. Environ. Microbiol. 61: 4403-4408.
-
Guo, B., X. Chen, C. Sun, B. Zhou, and Y. Zhang. 2009. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-
$\beta$ -1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84: 1107-1115. https://doi.org/10.1007/s00253-009-2056-y - Henrissat, B. and A. Bairoch. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696. https://doi.org/10.1042/bj3160695
- Huang, J., G. Wang, and L. Xiao. 2006. Cloning, sequencing and expression of the xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli. Bioresour. Technol. 97: 802-808. https://doi.org/10.1016/j.biortech.2005.04.011
- Hwang, I. T., H. K. Lim, H. Y. Song, S. J. Cho, J. S. Chang, and N. J. Park. 2010. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL- 001. Biotechnol. Adv. 28: 594-601. https://doi.org/10.1016/j.biotechadv.2010.05.007
- Kim, D. Y., M. K. Han, H. W. Oh, K. S. Bae, T. S. Jeong, S. U. Kim, et al. 2010. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: Biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresour. Technol. 101: 8814-8821. https://doi.org/10.1016/j.biortech.2010.06.023
- Ko, C. H., W. L. Chen, C. H. Tsai, W. N. Jane, C. C. Liu, and J. Tu. 2007. Paenibacillus campinasensis BL11: A wood materialutilizing bacterial strain isolated from black liquor. Bioresour. Technol. 98: 2727-2733. https://doi.org/10.1016/j.biortech.2006.09.034
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685. https://doi.org/10.1038/227680a0
- Lee, H., D. Shin, N. Cho, H. Kim, S. Shin, S. Im, H. Blaise Lee, S. Chun, and S. Bai. 2000. Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol. Lett. 22: 387-392. https://doi.org/10.1023/A:1005676702533
- Li, N., K. Meng, Y. Wang, P. Shi, H. Luo, Y. Bai, P. Yang, and B. Yao. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240. https://doi.org/10.1007/s00253-008-1533-z
- Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
- Liu, L., X. Li, and W. Shao. 2004 Computational analysis of responsible dipeptides for optimum pH in G/11 xylanase. Biochem. Biophys. Res. Commun. 321: 391-396. https://doi.org/10.1016/j.bbrc.2004.06.156
- Liu, Y. and R. F. Whittier. 1995. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674-681. https://doi.org/10.1016/0888-7543(95)80010-J
- Maat, J., M. Roza, J. Verbakel, H. Stam, M. J. Santos Da Silva, M. Bosse, et al. 1992. Xylanases and their application in bakery, pp. 349-360. In J. Visser, M. A. Kusters van Someren, G. Beldman, and A. G. J. Voragen (eds.). Xylans and Xylanases. Progress in Biotechnology, No. 7. Elsevier Science Publishers, Amsterdam, The Netherlands.
-
Mamo, G., R. Hatti-Kaul, and B. Mattiasson. 2006. A thermostable alkaline active endo-
$\beta$ -1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microb. Technol. 39: 1492-1498. https://doi.org/10.1016/j.enzmictec.2006.03.040 - Mamo, G., M. Thunnissen, R. Hatti-Kaul, and B. Mattiasson. 2009. An alkaline active xylanase: Insights into mechanisms of high pH catalytic adaptation. Biochimie 91: 1187-1196. https://doi.org/10.1016/j.biochi.2009.06.017
- Manikandan, K., A. Bhardwaj, N. Gupta, N. K. Lokanath, A. Ghosh, V. S. Reddy, and S. Ramakumar. 2006. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: Structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci. 15: 1951-1960. https://doi.org/10.1110/ps.062220206
- Mchunu, N. P., S. Singh, and K. Permaul. 2009. Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J. Biotechnol. 141: 26- 30. https://doi.org/10.1016/j.jbiotec.2009.02.021
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Monis, P. T., S. Giglio, and C. P. Saint. 2005. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal. Biochem. 340: 24-34. https://doi.org/10.1016/j.ab.2005.01.046
- Ossola, M. and Y. M. Galante. 2004. Scouring of flax rove with the aid of enzymes. Enzyme Microb. Technol. 34: 177-186. https://doi.org/10.1016/j.enzmictec.2003.10.003
- Qiu, Z., P. Shi, H. Luo, Y. Bai, T. Yuan, P. Yang, S. Liu, and B. Yao. 2010. A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzyme Microb. Technol. 46: 506-512. https://doi.org/10.1016/j.enzmictec.2010.02.003
- Roberge, M., F. Shareck, R. Morosoli, D. Kluepfel, and C. Dupont. 1998. Site-directed mutagenesis study of a conserved residue in family 10 glycanases: Histidine 86 of xylanase A from Streptomyces lividans. Protein Eng. 11: 399-404. https://doi.org/10.1093/protein/11.5.399
- Schmidt, A., A. Schlacher, W. Steiner, H. Schwab, and C. Kratky. 1998. Structure of the xylanase from Penicillium simplicissimum. Protein Sci. 7: 2081-2088. https://doi.org/10.1002/pro.5560071004
- Subramaniyan, S. and P. Prema. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7. https://doi.org/10.1111/j.1574-6968.2000.tb08925.x
- Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64. https://doi.org/10.1080/07388550290789450
- Sudo, M., M. Sakka, T. Kimyra, K. Ratanakhanokchai, and K. Sakka. 2010. Characterization of Paenibacillus curdlanolyticus intracellular xylanase Xyn10B encoded by the xyn10B gene. Biosci. Biotechnol. Biochem. 74: 2358-2360. https://doi.org/10.1271/bbb.100555
-
Sun, H. J., S. Yoshida, Y. Kawabata, N. H. Park, and I. Kusakabe. 2002. Separation of two functional domains of the family F/10
$\beta$ -xylanase from Streptomyces olivaceoviridis E-86 limited proteolysis with papain and some of their properties. Biotechnol. Lett. 24: 595-601. https://doi.org/10.1023/A:1015055624662 - Wang, G., Y. Wang, P. Yang, H. Luo, H. Huang, P. Shi, K. Meng, and B. Yao. 2010. Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl. Microbiol. Biotechnol. 87: 1383-1393. https://doi.org/10.1007/s00253-010-2564-9
- Wang, J., Y. Bai, P. Yang, P. Shi, H. Luo, K. Meng, H. Huang, J. Yin, and B. Yao. 2010. A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World J. Microbiol. Biotechnol. 26: 917-924. https://doi.org/10.1007/s11274-009-0254-5
- Wang, Q., X. Fan, W. Gao, and J. Chen. 2006. Scouring of knitted cotton fabrics with compound enzymes. J. Text. Res. 27: 27-30.
- Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymol. 160: 59-74.
- Yu, E. K. C., L. U. L. Tan, M. K. H. Chan, L. Deschatelets, and J. N. Saddler. 1987. Production of thermostable xylanase by a thermophilic fungus, Thermoascus aurantiacus. Enzyme Microb. Technol. 9: 16-24. https://doi.org/10.1016/0141-0229(87)90044-5
피인용 문헌
- Production, purification and characterisation of alkali stable xylanase from Cellulosimicrobium sp. MTCC 10645 vol.2, pp.3, 2011, https://doi.org/10.1016/s2221-1691(12)60496-1
- Isolation, Purification, and Characterization of a Thermostable Xylanase from a Novel Strain, Paenibacillus campinasensis G1-1 vol.22, pp.7, 2011, https://doi.org/10.4014/jmb.1110.10060
- Molecular cloning and heterologous expression of an acid stable xylanase gene from Alternaria sp. HB186 vol.28, pp.3, 2011, https://doi.org/10.1007/s11274-011-0924-y
- Cloning, expression, and characterization of an alkaline thermostable GH11 xylanase from Thermobifida halotolerans YIM 90462T vol.39, pp.8, 2011, https://doi.org/10.1007/s10295-012-1119-8
- Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park vol.6, pp.3, 2011, https://doi.org/10.4056/sigs.2605792
- Molecular Cloning and Heterologous Expression of an Acid-Stable Endoxylanase Gene from Penicillium oxalicum in Trichoderma reesei vol.23, pp.2, 2011, https://doi.org/10.4014/jmb.1208.08030
- Purification and Characterization of a Thermostable Xylanase from Paenibacillus sp. NF1 and its Application in Xylooligosaccharides Production vol.24, pp.4, 2014, https://doi.org/10.4014/jmb.1312.12072
- Molecular Characterization of a Thermophilic and Salt- and Alkaline-Tolerant Xylanase from Planococcus sp. SL4, a Strain Isolated from the Sediment of a Soda Lake vol.25, pp.5, 2015, https://doi.org/10.4014/jmb.1408.08062
- Molecular Cloning and Sequencing of AlkalophilicCellulosimicrobium cellulans CKMX1 Xylanase Gene Isolated from Mushroom Compost and Characterization of the Gene Product vol.58, pp.6, 2011, https://doi.org/10.1590/s1516-89132015060319
- Expression, Characterization and Its Deinking Potential of a Thermostable Xylanase From Planomicrobium glaciei CHR43 vol.9, pp.None, 2011, https://doi.org/10.3389/fbioe.2021.618979