DOI QR코드

DOI QR Code

Production of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae

  • Jung, Joon-Young (Department of Chemical and Biological Engineering, Korea University) ;
  • Yun, Hyun-Shik (Department of Biotechnology, Inha University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University)
  • Received : 2011.03.04
  • Accepted : 2011.04.28
  • Published : 2011.08.28

Abstract

Glycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.

Keywords

References

  1. Ahrens, K., K. Menzel, A. Zeng, and W. Deckwer. 1998. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumonia in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol. Bioeng. 59: 544-552. https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<544::AID-BIT3>3.0.CO;2-A
  2. Altaras, N. E. and D. C. Cameron. 1999. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185.
  3. Altaras, N. E. and D. C. Cameron. 1999. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185.
  4. Atkinson, B. M., F. 1982. Biochemical Engineering and Biotechnology Handbook. [Contains glossary]. Nature Press, New York.
  5. Barbirato, F., S. Astruc, P. Soucaille, C. Camarasa, J. M. Salmon, and A. Bories. 1997. Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: Limitations and regulations. Microbiology 143: 2423-2432. https://doi.org/10.1099/00221287-143-7-2423
  6. Bergmeyer, H. U. 1984. Methods of Enzymatic Analysis. Verlag Chemie, Weinheim.
  7. Bouvet, O. M., P. Lenormand, J. P. Carlier, and P. A. Grimont. 1994. Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species. Res. Microbiol. 145: 129-139. https://doi.org/10.1016/0923-2508(94)90006-X
  8. Costenoble, R., H. Valadi, L. Gustafsson, C. Niklasson, and C. J. Franzen. 2000. Microaerobic glycerol formation in Saccharomyces cerevisiae. Yeast 16: 1483-1495. https://doi.org/10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K
  9. da Silva, G. P., M. Mack, and J. Contiero. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39. https://doi.org/10.1016/j.biotechadv.2008.07.006
  10. Dharmadi, Y., A. Murarka, and R. Gonzalez. 2006. Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnol. Bioeng. 94: 821-829. https://doi.org/10.1002/bit.21025
  11. Durnin, G., J. Clomburg, Z. Yeates, P. J. Alvarez, K. Zygourakis, P. Campbell, and R. Gonzalez. 2009. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol. Bioeng. 103: 148-161. https://doi.org/10.1002/bit.22246
  12. Goldemberg, J. 2007. Ethanol for a sustainable energy future. Science 315: 808-810. https://doi.org/10.1126/science.1137013
  13. Gonzalez, R., A. Murarka, Y. Dharmadi, and S. S. Yazdani. 2008. A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metab. Eng. 10: 234-245. https://doi.org/10.1016/j.ymben.2008.05.001
  14. Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66: 300-372. https://doi.org/10.1128/MMBR.66.2.300-372.2002
  15. Holst, B., C. Lunde, F. Lages, R. Oliveira, C. Lucas, and M. C. Kielland-Brandt. 2000. GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol. Microbiol. 37: 108-124. https://doi.org/10.1046/j.1365-2958.2000.01968.x
  16. Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168.
  17. Jarvis, G. N., E. R. Moore, and J. H. Thiele. 1997. Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. J. Appl. Microbiol. 83: 166-174. https://doi.org/10.1046/j.1365-2672.1997.00217.x
  18. Jeon, E., S. Lee, D. Kim, H. Yoon, M. Oh, C. Park, and J. Lee. 2009. Development of a Saccharomyces cerevisiae strain for the production of 1,2-propanediol by gene manipulation. Enzyme Microb. Technol. 45: 42-47. https://doi.org/10.1016/j.enzmictec.2009.03.009
  19. Jung, J. Y., E. S. Choi, and M. K. Oh. 2008. Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 18: 1797-1802.
  20. Lee, W. and N. A. Dasilva. 2006. Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab. Eng. 8: 58-65. https://doi.org/10.1016/j.ymben.2005.09.001
  21. Lin, E. C. 1976. Glycerol dissimilation and its regulation in bacteria. Annu. Rev. Microbiol. 30: 535-578. https://doi.org/10.1146/annurev.mi.30.100176.002535
  22. McKendry, P. 2002. Energy production from biomass (Part 1): Overview of biomass. Bioresour. Technol. 83: 37-46. https://doi.org/10.1016/S0960-8524(01)00118-3
  23. McKendry, P. 2002. Energy production from biomass (Part 2): Conversion technologies. Bioresour. Technol. 83: 47-54. https://doi.org/10.1016/S0960-8524(01)00119-5
  24. Michnick, S., J. L. Roustan, F. Remize, P. Barre, and S. Dequin. 1997. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13: 783-793. https://doi.org/10.1002/(SICI)1097-0061(199707)13:9<783::AID-YEA128>3.0.CO;2-W
  25. Neves, L., F. Lages, and C. Lucas. 2004. New insights on glycerol transport in Saccharomyces cerevisiae. FEBS Lett. 565: 160-162. https://doi.org/10.1016/j.febslet.2004.04.003
  26. Nevoigt, E. and U. Stahl. 1996. Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast 12: 1331-1337. https://doi.org/10.1002/(SICI)1097-0061(199610)12:13<1331::AID-YEA28>3.0.CO;2-0
  27. Nguyen, H. T. and E. Nevoigt. 2009. Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: A proof of concept. Metab. Eng. 11: 335-346. https://doi.org/10.1016/j.ymben.2009.07.005
  28. Norbeck, J. and A. Blomberg. 1997. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272: 5544-5554. https://doi.org/10.1074/jbc.272.9.5544
  29. Overkamp, K. M., B. M. Bakker, P. Kotter, M. A. Luttik, J. P. Van Dijken, and J. T. Pronk. 2002. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68: 2814-2821. https://doi.org/10.1128/AEM.68.6.2814-2821.2002
  30. Pahlman, A. K., K. Granath, R. Ansell, S. Hohmann, and L. Adler. 2001. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J. Biol. Chem. 276: 3555-3563. https://doi.org/10.1074/jbc.M007164200
  31. Paulsen, I. T., M. K. Sliwinski, B. Nelissen, A. Goffeau, and M. H. Saier Jr. 1998. Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett. 430: 116-125 https://doi.org/10.1016/S0014-5793(98)00629-2
  32. Pavlik, P., M. Simon, T. Schuster, and H. Ruis. 1993. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: Cloning and characterization. Curr. Genet. 24: 21-25. https://doi.org/10.1007/BF00324660
  33. Remize, F., J. L. Roustan, J. M. Sablayrolles, P. Barre, and S. Dequin. 1999. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl. Environ. Microbiol. 65: 143-149.
  34. Shams Yazdani, S. and R. Gonzalez. 2008. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and coproducts. Metab. Eng. 10: 340-351. https://doi.org/10.1016/j.ymben.2008.08.005
  35. Sprenger, G. A., B. A. Hammer, E. A. Johnson, and E. C. Lin. 1989. Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae. J. Gen. Microbiol. 135: 1255-1262.
  36. Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793-1808. https://doi.org/10.1002/yea.320101310
  37. Yazdani, S. S. and R. Gonzalez. 2007. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18: 213-219. https://doi.org/10.1016/j.copbio.2007.05.002
  38. Zheng, Z. M., Y. Z. Xu, H. J. Liu, N. N. Guo, Z. Z. Cai, and D. H. Liu. 2008. Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol. Bioeng. 100: 923-932. https://doi.org/10.1002/bit.21830

Cited by

  1. Metabolically Engineered Escherichia coli as a Tool for the Production of Bioenergy and Biochemicals from Glycerol vol.17, pp.4, 2011, https://doi.org/10.1007/s12257-011-0446-3
  2. Characterization of GCY1 in Saccharomyces cerevisiae by metabolic profiling vol.113, pp.6, 2011, https://doi.org/10.1111/jam.12013
  3. Bioconversion of crude glycerol by fungi vol.93, pp.5, 2011, https://doi.org/10.1007/s00253-012-3921-7
  4. Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus vol.12, pp.None, 2013, https://doi.org/10.1186/1475-2859-12-27
  5. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO 2 to 1,2-propanediol vol.12, pp.None, 2011, https://doi.org/10.1186/1475-2859-12-4
  6. Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in bacteria vol.4, pp.None, 2013, https://doi.org/10.3389/fmicb.2013.00407
  7. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation vol.47, pp.s1, 2013, https://doi.org/10.3109/10715762.2013.815348
  8. Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products vol.6, pp.9, 2013, https://doi.org/10.3390/en6094739
  9. Microbial production of short chain diols vol.13, pp.None, 2014, https://doi.org/10.1186/s12934-014-0165-5
  10. Role of Methylglyoxal in Alzheimer's Disease vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/238485
  11. Volumetric and viscometric behavior of the binary systems ethyl lactate+1,2-propanediol, +1,3-propanediol, +tetrahydrofuran and +tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO pa vol.373, pp.None, 2011, https://doi.org/10.1016/j.fluid.2014.04.002
  12. Metabolic engineering of Mortierella alpina for arachidonic acid production with glycerol as carbon source vol.14, pp.None, 2011, https://doi.org/10.1186/s12934-015-0392-4
  13. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum vol.8, pp.None, 2011, https://doi.org/10.1186/s13068-015-0269-0
  14. Synthesis of chemicals by metabolic engineering of microbes vol.44, pp.11, 2011, https://doi.org/10.1039/c5cs00159e
  15. Biorefinery for Glycerol Rich Biodiesel Industry Waste vol.56, pp.2, 2011, https://doi.org/10.1007/s12088-016-0583-7
  16. Bioconversion technologies of crude glycerol to value added industrial products vol.9, pp.None, 2011, https://doi.org/10.1016/j.btre.2015.11.002
  17. Production of 1,3-propanediol from glycerol via fermentation by Saccharomyces cerevisiae vol.18, pp.17, 2016, https://doi.org/10.1039/c6gc00125d
  18. Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol vol.9, pp.None, 2011, https://doi.org/10.1186/s13068-016-0625-8
  19. Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered Corynebacterium glutamicum vol.10, pp.None, 2011, https://doi.org/10.1186/s13068-017-0969-8
  20. Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies vol.10, pp.None, 2011, https://doi.org/10.1186/s13068-017-0992-9
  21. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals vol.118, pp.1, 2011, https://doi.org/10.1021/acs.chemrev.6b00804
  22. Integrated biodiesel facilities: review of glycerol-based production of fuels and chemicals vol.20, pp.7, 2011, https://doi.org/10.1007/s10098-017-1424-z
  23. Combination of Three Methods to Reduce Glucose Metabolic Rate For Improving N-Acetylglucosamine Production in Saccharomyces cerevisiae vol.66, pp.50, 2011, https://doi.org/10.1021/acs.jafc.8b04291
  24. Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes vol.51, pp.None, 2011, https://doi.org/10.1016/j.ymben.2018.09.012
  25. Gene Source Screening as a Tool for Naringenin Production in Engineered Saccharomyces cerevisiae vol.4, pp.7, 2011, https://doi.org/10.1021/acsomega.9b00364