References
- Ahrens, K., K. Menzel, A. Zeng, and W. Deckwer. 1998. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumonia in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol. Bioeng. 59: 544-552. https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<544::AID-BIT3>3.0.CO;2-A
- Altaras, N. E. and D. C. Cameron. 1999. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185.
- Altaras, N. E. and D. C. Cameron. 1999. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185.
- Atkinson, B. M., F. 1982. Biochemical Engineering and Biotechnology Handbook. [Contains glossary]. Nature Press, New York.
- Barbirato, F., S. Astruc, P. Soucaille, C. Camarasa, J. M. Salmon, and A. Bories. 1997. Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: Limitations and regulations. Microbiology 143: 2423-2432. https://doi.org/10.1099/00221287-143-7-2423
- Bergmeyer, H. U. 1984. Methods of Enzymatic Analysis. Verlag Chemie, Weinheim.
- Bouvet, O. M., P. Lenormand, J. P. Carlier, and P. A. Grimont. 1994. Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species. Res. Microbiol. 145: 129-139. https://doi.org/10.1016/0923-2508(94)90006-X
- Costenoble, R., H. Valadi, L. Gustafsson, C. Niklasson, and C. J. Franzen. 2000. Microaerobic glycerol formation in Saccharomyces cerevisiae. Yeast 16: 1483-1495. https://doi.org/10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K
- da Silva, G. P., M. Mack, and J. Contiero. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39. https://doi.org/10.1016/j.biotechadv.2008.07.006
- Dharmadi, Y., A. Murarka, and R. Gonzalez. 2006. Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnol. Bioeng. 94: 821-829. https://doi.org/10.1002/bit.21025
- Durnin, G., J. Clomburg, Z. Yeates, P. J. Alvarez, K. Zygourakis, P. Campbell, and R. Gonzalez. 2009. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol. Bioeng. 103: 148-161. https://doi.org/10.1002/bit.22246
- Goldemberg, J. 2007. Ethanol for a sustainable energy future. Science 315: 808-810. https://doi.org/10.1126/science.1137013
- Gonzalez, R., A. Murarka, Y. Dharmadi, and S. S. Yazdani. 2008. A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metab. Eng. 10: 234-245. https://doi.org/10.1016/j.ymben.2008.05.001
- Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66: 300-372. https://doi.org/10.1128/MMBR.66.2.300-372.2002
- Holst, B., C. Lunde, F. Lages, R. Oliveira, C. Lucas, and M. C. Kielland-Brandt. 2000. GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol. Microbiol. 37: 108-124. https://doi.org/10.1046/j.1365-2958.2000.01968.x
- Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168.
- Jarvis, G. N., E. R. Moore, and J. H. Thiele. 1997. Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. J. Appl. Microbiol. 83: 166-174. https://doi.org/10.1046/j.1365-2672.1997.00217.x
- Jeon, E., S. Lee, D. Kim, H. Yoon, M. Oh, C. Park, and J. Lee. 2009. Development of a Saccharomyces cerevisiae strain for the production of 1,2-propanediol by gene manipulation. Enzyme Microb. Technol. 45: 42-47. https://doi.org/10.1016/j.enzmictec.2009.03.009
- Jung, J. Y., E. S. Choi, and M. K. Oh. 2008. Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 18: 1797-1802.
- Lee, W. and N. A. Dasilva. 2006. Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab. Eng. 8: 58-65. https://doi.org/10.1016/j.ymben.2005.09.001
- Lin, E. C. 1976. Glycerol dissimilation and its regulation in bacteria. Annu. Rev. Microbiol. 30: 535-578. https://doi.org/10.1146/annurev.mi.30.100176.002535
- McKendry, P. 2002. Energy production from biomass (Part 1): Overview of biomass. Bioresour. Technol. 83: 37-46. https://doi.org/10.1016/S0960-8524(01)00118-3
- McKendry, P. 2002. Energy production from biomass (Part 2): Conversion technologies. Bioresour. Technol. 83: 47-54. https://doi.org/10.1016/S0960-8524(01)00119-5
- Michnick, S., J. L. Roustan, F. Remize, P. Barre, and S. Dequin. 1997. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13: 783-793. https://doi.org/10.1002/(SICI)1097-0061(199707)13:9<783::AID-YEA128>3.0.CO;2-W
- Neves, L., F. Lages, and C. Lucas. 2004. New insights on glycerol transport in Saccharomyces cerevisiae. FEBS Lett. 565: 160-162. https://doi.org/10.1016/j.febslet.2004.04.003
- Nevoigt, E. and U. Stahl. 1996. Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast 12: 1331-1337. https://doi.org/10.1002/(SICI)1097-0061(199610)12:13<1331::AID-YEA28>3.0.CO;2-0
- Nguyen, H. T. and E. Nevoigt. 2009. Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: A proof of concept. Metab. Eng. 11: 335-346. https://doi.org/10.1016/j.ymben.2009.07.005
- Norbeck, J. and A. Blomberg. 1997. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272: 5544-5554. https://doi.org/10.1074/jbc.272.9.5544
- Overkamp, K. M., B. M. Bakker, P. Kotter, M. A. Luttik, J. P. Van Dijken, and J. T. Pronk. 2002. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68: 2814-2821. https://doi.org/10.1128/AEM.68.6.2814-2821.2002
- Pahlman, A. K., K. Granath, R. Ansell, S. Hohmann, and L. Adler. 2001. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J. Biol. Chem. 276: 3555-3563. https://doi.org/10.1074/jbc.M007164200
- Paulsen, I. T., M. K. Sliwinski, B. Nelissen, A. Goffeau, and M. H. Saier Jr. 1998. Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett. 430: 116-125 https://doi.org/10.1016/S0014-5793(98)00629-2
- Pavlik, P., M. Simon, T. Schuster, and H. Ruis. 1993. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: Cloning and characterization. Curr. Genet. 24: 21-25. https://doi.org/10.1007/BF00324660
- Remize, F., J. L. Roustan, J. M. Sablayrolles, P. Barre, and S. Dequin. 1999. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl. Environ. Microbiol. 65: 143-149.
- Shams Yazdani, S. and R. Gonzalez. 2008. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and coproducts. Metab. Eng. 10: 340-351. https://doi.org/10.1016/j.ymben.2008.08.005
- Sprenger, G. A., B. A. Hammer, E. A. Johnson, and E. C. Lin. 1989. Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae. J. Gen. Microbiol. 135: 1255-1262.
- Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793-1808. https://doi.org/10.1002/yea.320101310
- Yazdani, S. S. and R. Gonzalez. 2007. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18: 213-219. https://doi.org/10.1016/j.copbio.2007.05.002
- Zheng, Z. M., Y. Z. Xu, H. J. Liu, N. N. Guo, Z. Z. Cai, and D. H. Liu. 2008. Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol. Bioeng. 100: 923-932. https://doi.org/10.1002/bit.21830
Cited by
- Metabolically Engineered Escherichia coli as a Tool for the Production of Bioenergy and Biochemicals from Glycerol vol.17, pp.4, 2011, https://doi.org/10.1007/s12257-011-0446-3
- Characterization of GCY1 in Saccharomyces cerevisiae by metabolic profiling vol.113, pp.6, 2011, https://doi.org/10.1111/jam.12013
- Bioconversion of crude glycerol by fungi vol.93, pp.5, 2011, https://doi.org/10.1007/s00253-012-3921-7
- Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus vol.12, pp.None, 2013, https://doi.org/10.1186/1475-2859-12-27
- Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO 2 to 1,2-propanediol vol.12, pp.None, 2011, https://doi.org/10.1186/1475-2859-12-4
- Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in bacteria vol.4, pp.None, 2013, https://doi.org/10.3389/fmicb.2013.00407
- Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation vol.47, pp.s1, 2013, https://doi.org/10.3109/10715762.2013.815348
- Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products vol.6, pp.9, 2013, https://doi.org/10.3390/en6094739
- Microbial production of short chain diols vol.13, pp.None, 2014, https://doi.org/10.1186/s12934-014-0165-5
- Role of Methylglyoxal in Alzheimer's Disease vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/238485
- Volumetric and viscometric behavior of the binary systems ethyl lactate+1,2-propanediol, +1,3-propanediol, +tetrahydrofuran and +tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO pa vol.373, pp.None, 2011, https://doi.org/10.1016/j.fluid.2014.04.002
- Metabolic engineering of Mortierella alpina for arachidonic acid production with glycerol as carbon source vol.14, pp.None, 2011, https://doi.org/10.1186/s12934-015-0392-4
- Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum vol.8, pp.None, 2011, https://doi.org/10.1186/s13068-015-0269-0
- Synthesis of chemicals by metabolic engineering of microbes vol.44, pp.11, 2011, https://doi.org/10.1039/c5cs00159e
- Biorefinery for Glycerol Rich Biodiesel Industry Waste vol.56, pp.2, 2011, https://doi.org/10.1007/s12088-016-0583-7
- Bioconversion technologies of crude glycerol to value added industrial products vol.9, pp.None, 2011, https://doi.org/10.1016/j.btre.2015.11.002
- Production of 1,3-propanediol from glycerol via fermentation by Saccharomyces cerevisiae vol.18, pp.17, 2016, https://doi.org/10.1039/c6gc00125d
- Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol vol.9, pp.None, 2011, https://doi.org/10.1186/s13068-016-0625-8
- Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered Corynebacterium glutamicum vol.10, pp.None, 2011, https://doi.org/10.1186/s13068-017-0969-8
- Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies vol.10, pp.None, 2011, https://doi.org/10.1186/s13068-017-0992-9
- DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals vol.118, pp.1, 2011, https://doi.org/10.1021/acs.chemrev.6b00804
- Integrated biodiesel facilities: review of glycerol-based production of fuels and chemicals vol.20, pp.7, 2011, https://doi.org/10.1007/s10098-017-1424-z
- Combination of Three Methods to Reduce Glucose Metabolic Rate For Improving N-Acetylglucosamine Production in Saccharomyces cerevisiae vol.66, pp.50, 2011, https://doi.org/10.1021/acs.jafc.8b04291
- Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes vol.51, pp.None, 2011, https://doi.org/10.1016/j.ymben.2018.09.012
- Gene Source Screening as a Tool for Naringenin Production in Engineered Saccharomyces cerevisiae vol.4, pp.7, 2011, https://doi.org/10.1021/acsomega.9b00364