References
- Anwer, K., M. N. Barnes, J. Fewell, D. H. Lewis, and R. D. Alvarez. 2010. Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer. Gene Ther. 17: 360-369. https://doi.org/10.1038/gt.2009.159
- Astriab-Fisher, A., D. Sergueev, M. Fisher, B. R. Shaw, and R. L. Juliano. 2002. Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: Effects on cellular uptake, binding to target sequences, and biologic actions. Pharm. Res. 19: 744-754. https://doi.org/10.1023/A:1016136328329
- Bulaj, G., T. Kortemme, and D. P. Goldenberg. 1998. Ionizationreactivity relationships for cysteine thiols in polypeptides. Biochemistry 37: 8965-8972. https://doi.org/10.1021/bi973101r
- Cheng, S., W. S. Craig, D. Mullen, J. F. Tschopp, D. Dixon, and M. D. Pierschbacher. 1994. Design and synthesis of novel cyclic RGD-containing peptides as highly potent and selective integrin alpha IIb beta 3 antagonists. J. Med. Chem. 37: 1-8. https://doi.org/10.1021/jm00027a001
- Elmquist, A., M. Lindgren, T. Bartfai, and U. Langel. 2001. VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp. Cell Res. 269: 237-244. https://doi.org/10.1006/excr.2001.5316
- Frankel, A. D. and C. O. Pabo. 1988. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55: 1189- 1193. https://doi.org/10.1016/0092-8674(88)90263-2
- Green, M. and P. M. Loewenstein. 1988. Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell 55: 1179-1188. https://doi.org/10.1016/0092-8674(88)90262-0
- Hu, Y., K. Li, L. Wang, S. Yin, Z. Zhang, and Y. Zhang. 2010. Pegylated immuno-lipopolyplexes: A novel non-viral gene delivery system for liver cancer therapy. J. Control. Release 144: 75-81. https://doi.org/10.1016/j.jconrel.2010.02.005
- Hyndman, L., J. L. Lemoine, L. Huang, D. J. Porteous, A. C. Boyd, and X. Nan. 2004. HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J. Control. Release 99: 435-444. https://doi.org/10.1016/j.jconrel.2004.07.023
- Ignatovich, I. A., E. B. Dizhe, A. V. Pavlotskaya, B. N. Akifiev, S. V. Burov, S. V. Orlov, and A. P. Perevozchikov. 2003. Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. J. Biol. Chem. 278: 42625- 42636. https://doi.org/10.1074/jbc.M301431200
- Joliot, A., C. Pernelle, H. Deagostini-Bazin, and A. Prochiantz. 1991. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. USA 88: 1864-1868. https://doi.org/10.1073/pnas.88.5.1864
- Karmali, P. P. and A. Chaudhuri. 2007. Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises. Med. Res. Rev. 27: 696-722. https://doi.org/10.1002/med.20090
- Kawase, Y., D. Ladage, and R. J. Hajjar. 2011. Rescuing the failing heart by targeted gene transfer. J. Am. Coll. Cardiol. 57: 1169-1180. https://doi.org/10.1016/j.jacc.2010.11.023
- Lanford, R. E., P. Kanda, and R. C. Kennedy. 1986. Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46: 575-582. https://doi.org/10.1016/0092-8674(86)90883-4
- Lo, S. L. and S. Wang. 2008. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials 29: 2408- 2414. https://doi.org/10.1016/j.biomaterials.2008.01.031
- Maeda, H., J. Wu, T. Sawa, Y. Matsumura, and K. Hori. 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65: 271-284. https://doi.org/10.1016/S0168-3659(99)00248-5
- McKenzie, D. L., K. Y. Kwok, and K. G. Rice. 2000. A potent new class of reductively activated peptide gene delivery agents. J. Biol. Chem. 275: 9970-9977. https://doi.org/10.1074/jbc.275.14.9970
- McKenzie, D. L., E. Smiley, K. Y. Kwok, and K. G. Rice. 2000. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug. Chem. 11: 901-909. https://doi.org/10.1021/bc000056i
- Moon, I. J., H. Kang, Y. B. Seu, B. C. Chang, D. K. Song, and J. G. Park. 2007. Marked transfection enhancement by the DPL (DNA/peptide/lipid) complex. Int. J. Mol. Med. 20: 429-437.
- Oh, Y. K. and T. G. Park. 2009. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev. 61: 850-862. https://doi.org/10.1016/j.addr.2009.04.018
- Pappalardo, J. S., V. Quattrocchi, C. Langellotti, S. Di Giacomo, V. Gnazzo, V. Olivera, et al. 2009. Improved transfection of spleen-derived antigen-presenting cells in culture using TATpliposomes. J. Control. Release 134: 41-46. https://doi.org/10.1016/j.jconrel.2008.11.006
- Park, Y., K. Y. Kwok, C. Boukarim, and K. G. Rice. 2002. Synthesis of sulfhydryl cross-linking poly(ethylene glycol)-peptides and glycopeptides as carriers for gene delivery. Bioconjug. Chem. 13: 232-239. https://doi.org/10.1021/bc010070a
- Piron, J., K. L. Quang, F. Briec, J. C. Amirault, A. L. Leoni, L. Desigaux, et al. 2008. Biological pacemaker engineered by nonviral gene transfer in a mouse model of complete atrioventricular block. Mol. Ther. 16: 1937-1943. https://doi.org/10.1038/mt.2008.209
- Pooga, M., M. Hallbrink, M. Zorko, and U. Langel. 1998. Cell penetration by transportan. FASEB J. 12: 67-77. https://doi.org/10.1096/fasebj.12.1.67
- Qin, B. and K. Cheng. 2011. Silencing of the IKKepsilon gene by siRNA inhibits invasiveness and growth of breast cancer cells. Breast Cancer Res. 12: R74.
- Rudolph, C., C. Plank, J. Lausier, U. Schillinger, R. H. Muller, and J. Rosenecker. 2003. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J. Biol. Chem. 278: 11411-11418. https://doi.org/10.1074/jbc.M211891200
- Siprashvili, Z., F. A. Scholl, S. F. Oliver, A. Adams, C. H. Contag, P. A. Wender, and P. A. Khavari. 2003. Gene transfer via reversible plasmid condensation with cysteine-flanked, internally spaced arginine-rich peptides. Hum. Gene Ther. 14: 1225-1233. https://doi.org/10.1089/104303403767740768
- Torchilin, V. P., T. S. Levchenko, R. Rammohan, N. Volodina, B. Papahadjopoulos-Sternberg, and G. G. D'Souza. 2003. Cell transfection in vitro and in vivo with nontoxic TAT peptideliposome- DNA complexes. Proc. Natl. Acad. Sci. USA 100: 1972-1977. https://doi.org/10.1073/pnas.0435906100
- Vijayanathan, V., T. Thomas, and T. J. Thomas. 2002. DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 41: 14085-14094. https://doi.org/10.1021/bi0203987
- Vives, E., P. Brodin, and B. Lebleu. 1997. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272: 16010-16017. https://doi.org/10.1074/jbc.272.25.16010
- Wadia, J. S., R. V. Stan, and S. F. Dowdy. 2004. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10: 310-315. https://doi.org/10.1038/nm996
- Yamano, S., J. Dai, C. Yuvienco, S. Khapli, A. M. Moursi, and J. K. Montclare. 2011. Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. J. Control. Release.
- Zhang, S., B. Zhao, H. Jiang, B. Wang, and B. Ma. 2007. Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Control. Release 123: 1-10. https://doi.org/10.1016/j.jconrel.2007.07.016
Cited by
- Improving the Endosomal Escape of Cell-Penetrating Peptides and Their Cargos: Strategies and Challenges vol.5, pp.11, 2011, https://doi.org/10.3390/ph5111177
- Efficient in vivo gene delivery using modified Tat peptide with cationic lipids vol.36, pp.7, 2014, https://doi.org/10.1007/s10529-014-1497-2
- Validation of Heterodimeric TAT-NLS Peptide as a Gene Delivery Enhancer vol.25, pp.6, 2011, https://doi.org/10.4014/jmb.1411.11074
- Cationic cell-penetrating peptides as vehicles for siRNA delivery vol.6, pp.4, 2011, https://doi.org/10.4155/tde.15.2
- Strategies to stabilize cell penetrating peptides for in vivo applications vol.6, pp.10, 2015, https://doi.org/10.4155/tde.15.51
- Engineering liposomal nanoparticles for targeted gene therapy vol.24, pp.8, 2011, https://doi.org/10.1038/gt.2017.41
- Synthesis and Preclinical Evaluation of the Fibrin-Binding Cyclic Peptide 18F-iCREKA: Comparison with Its Contrasted Linear Peptide vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/6315954