DOI QR코드

DOI QR Code

Optimization of Tannase Production by Aspergillus niger in Solid-State Packed-Bed Bioreactor

  • Rodriguez-Duran, Luis V. (Department of Food Science and Technology, School of Chemistry, Universidad Autonoma de Coahuila) ;
  • Contreras-Esquivel, Juan C. (Department of Food Science and Technology, School of Chemistry, Universidad Autonoma de Coahuila) ;
  • Rodriguez, Raul (Department of Food Science and Technology, School of Chemistry, Universidad Autonoma de Coahuila) ;
  • Prado-Barragan, L. Arely (Department of Biotechnology, Universidad Autonoma Metropolitana Iztapalapa) ;
  • Aguilar, Cristobal N. (Department of Food Science and Technology, School of Chemistry, Universidad Autonoma de Coahuila)
  • Received : 2011.03.15
  • Accepted : 2011.06.04
  • Published : 2011.09.28

Abstract

Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett-Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature ($30^{\circ}C$), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.

Keywords

References

  1. Aguilar, C. N., C. Augur, E. Favela-Torres, and G. Viniegra-Gonzalez. 2001. Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: Influence of glucose and tannic acid. J. Ind. Microbiol. Biotechnol. 26: 296-302. https://doi.org/10.1038/sj.jim.7000132
  2. Aguilar, C. N., C. Augur, E. Favela-Torres, and G. Viniegra-Gonzalez. 2001. Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Process Biochem. 36: 565-570. https://doi.org/10.1016/S0032-9592(00)00251-X
  3. Aguilar, C. N., E. Favela-Torres, G. Viniegra-Gonzalez, and C. Augur. 2002. Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Appl. Biochem. Biotechnol. 102-103: 407-414. https://doi.org/10.1385/ABAB:102-103:1-6:407
  4. Aguilar, C. N. and G. Gutierrez-Sanchez. 2001. Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci. Technol. Int. 7: 373-382. https://doi.org/10.1106/69M3-B30K-CF7Q-RJ5G
  5. Aguilar, C. N., R. Rodriguez, G. Gutierrez-Sanchez, C. Augur, E. Favela-Torres, L. A. Prado-Barragan, et al. 2007. Microbial tannases: Advances and perspectives. Appl. Microbiol. Biotechnol. 76: 47-59. https://doi.org/10.1007/s00253-007-1000-2
  6. Ajay-Kumar, R., P. Gunasekaran, and M. Lakshmanan. 1999. Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. J. Basic Microbiol. 39: 161-168. https://doi.org/10.1002/(SICI)1521-4028(199906)39:3<161::AID-JOBM161>3.0.CO;2-U
  7. Anisha, G. S., R. K. Sukumaran, and P. Prema. 2008. Statistical optimization of alpha-galactosidase production in submerged fermentation by Streptomyces griseoloalbus using response surface methodology. Food Technol. Biotechnol. 46: 171-177.
  8. Anwar, Y. A. S., Hasim, and I. M. Artika. 2007. The production of tannin acyl hydrolase from Aspergillus niger. Microbiol. Indones. 1: 91-94. https://doi.org/10.5454/mi.1.2.9
  9. Banerjee, D., K. C. Mondal, and B. R. Pati. 2007. Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation. Acta Microbiol. Immunol. Hung. 54: 159-166. https://doi.org/10.1556/AMicr.54.2007.2.6
  10. Barbehenn, R. V., S. L. Bumgarner, E. F. Roosen, and M. M. Martin. 2001. Antioxidant defenses in caterpillars: Role of the ascorbate-recycling system in the midgut lumen. J. Insect Physiol. 47: 349-357. https://doi.org/10.1016/S0022-1910(00)00125-6
  11. Barthomeuf, C., F. Regerat, and H. Pourrat. 1994. Production, purification and characterization of a tannase from Aspergillus niger LCF 8. J. Ferment. Bioeng. 77: 320-323. https://doi.org/10.1016/0922-338X(94)90242-9
  12. Battestin, V. and G. A. Macedo. 2007. Tannase production by Paecilomyces variotii. Bioresour. Technol. 98: 1832-1837. https://doi.org/10.1016/j.biortech.2006.06.031
  13. Belmares, R., J. C. Contreras-Esquivel, R. Rodriguez-Herrera, A. R. Coronel, and C. N. Aguilar. 2004. Microbial production of tannase: An enzyme with potential use in food industry. LWT Food Sci. Technol. 37: 857-864. https://doi.org/10.1016/j.lwt.2004.04.002
  14. Box, G. E. P. and D. W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475. https://doi.org/10.1080/00401706.1960.10489912
  15. Bradoo, S., R. Gupta, and R. K. Saxena. 1997. Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus. Process Biochem. 32: 135-139. https://doi.org/10.1016/S0032-9592(96)00056-8
  16. Cruz-Hernandez, M., J. C. Contreras-Esquivel, F. Lara, R. Rodriguez, and C. N. Aguilar. 2005. Isolation and evaluation of tannin-degrading fungal strains from the mexican desert. Z. Naturforsch. C 60: 844-848.
  17. Das Mohapatra, P. K., C. Maity, R. S. Rao, B. R. Pati, and K. C. Mondal. 2009. Tannase production by Bacillus licheniformis KBR6: Optimization of submerged culture conditions by Taguchi DOE methodology. Food Res. Int. 42: 430-435. https://doi.org/10.1016/j.foodres.2009.02.013
  18. Dey, G., A. Mitra, R. Banerjee, and B. R. Maiti. 2001. Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochem. Eng. J. 7: 227-231. https://doi.org/10.1016/S1369-703X(00)00139-X
  19. Kar, B. and R. Banerjee. 2000. Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions. J. Ind. Microbiol. Biotechnol. 25: 29-38. https://doi.org/10.1038/sj.jim.7000011
  20. Kar, B., R. Banerjee, and B. C. Bhattacharyya. 1999. Microbial production of gallic acid by modified solid state fermentation. J. Ind. Microbiol. Biotechnol. 23: 173-177. https://doi.org/10.1038/sj.jim.2900713
  21. Khanbabaee, K. and T. van Ree. 2001. Tannins: Classification and definition. Nat. Prod. Rep. 18: 641-649. https://doi.org/10.1039/b101061l
  22. Kumar, R., J. Sharma, and R. Singh. 2007. Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiol. Res. 162: 384-390. https://doi.org/10.1016/j.micres.2006.06.012
  23. Lekha, P. K., N. Chand, and B. K. Lonsane. 1994. Computerized study of interactions among factors and their optimization through response surface methodology for the production of tannin acyl hydrolase by Aspergillus niger PKL 104 under solid state fermentation. Bioprocess Eng. 11: 7-15. https://doi.org/10.1007/BF00369609
  24. Lekha, P. K. and B. K. Lonsane. 1997. Production and application of tannin acyl hydrolase: State of the art, pp. 215-260. In S. Neidleman and A. Laskin (eds.). Advances in Applied Microbiology, Vol. 44. Academic Press, San Diego, California.
  25. Lu, M. J. and C. Chen. 2008. Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Res. Int. 41: 130-137. https://doi.org/10.1016/j.foodres.2007.10.012
  26. Luedeking, R. and E. L. Piret. 1959. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng. 1: 393-412. https://doi.org/10.1002/jbmte.390010406
  27. Manjit, A. Yadav, N. K. Aggarwal, K. Kumar and A. Kumar. 2008. Tannase production by Aspergillus fumigatus MA under solid-state fermentation. World J. Microbiol. Biotechnol. 24: 3023-3030. https://doi.org/10.1007/s11274-008-9847-7
  28. Mata-Gomez, M. A., L. V. Rodriguez, E. L. Ramos, J. Renovato, M. A. Cruz-Hernandez, R. Rodriguez, et al. 2009. A novel tannase from the xerophilic fungus Aspergillus niger GH1. J. Microbiol. Biotechnol. 19: 987-996. https://doi.org/10.4014/jmb.0811.615
  29. Molin, G. 2008. Lactobacillus plantarum: The role in foods and in human health, pp. 305-342. In E. R. Farnworth (ed.). Handbook of Fermented Functional Foods, 2nd Ed. CRC Press, Boca Raton, USA.
  30. Mondal, K. C., D. Banerjee, R. Banerjee, and B. R. Pati. 2001. Production and characterization of tannase from Bacillus cereus KBR9. J. Gen. Appl. Microbiol. 47: 263-267. https://doi.org/10.2323/jgam.47.263
  31. Mukherjee, G. and R. Banerjee. 2004. Biosynthesis of tannase and gallic acid from tannin-rich substrates by Rhizopus oryzae and Aspergillus foetidus. J. Basic Microbiol. 44: 42-48. https://doi.org/10.1002/jobm.200310317
  32. Murugan, K., S. Saravanababu, and M. Arunachalam. 2007. Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process. Bioresour. Technol. 98: 946-949. https://doi.org/10.1016/j.biortech.2006.04.031
  33. Paranthaman, R., R. Vidyalakshmi, S. Murugesh, and K. Singaravadivel. 2010. Manipulation of fermentation conditions on production of tannase from agricultural by-products with Aspergillus oryzae. Afr. J. Microbiol. Res. 4: 1440-1445.
  34. Pepi, M., L. R. Lampariello, R. Altieri, A. Esposito, G. Perra, M. Renzi, et al. 2010. Tannic acid degradation by bacterial strains Serratia spp. and Pantoea sp. isolated from olive mill waste mixtures. Int. Biodeterior. Biodegradation 64: 73-80. https://doi.org/10.1016/j.ibiod.2009.10.009
  35. Pinto, G. A. S., S. G. F. Leite, S. C. Terzi, and S. Couri. 2001. Selection of tannase-producing Aspergillus niger strains. Braz. J. Microbiol. 32: 24-26. https://doi.org/10.1590/S1517-83822001000100006
  36. Raaman, N., B. Mahendran, C. Jaganathan, S. Sukumar, and V. Chandrasekaran. 2010. Optimisation of extracellular tannase production from Paecilomyces variotii. World J. Microbiol. Biotechnol. 26: 1033-1039. https://doi.org/10.1007/s11274-009-0266-1
  37. Rajendran, A., A. Palanisamy, and V. Thangavelu. 2008. Evaluation of medium components by Plackett-Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chin. J. Biotechnol. 24: 436-444. https://doi.org/10.1016/S1872-2075(08)60024-2
  38. Rodrigues, T. H. S., M. A. A. Dantas, G. A. S. Pinto, and L. R. B. Goncalves. 2007. Tannase production by solid state fermentation of cashew apple bagasse. Appl. Biochem. Biotechnol. 137-140: 675-688. https://doi.org/10.1007/s12010-007-9088-5
  39. Rodrigues, T. H. S., G. A. S. Pinto, and L. R. B. Goncalves. 2008. Effects of inoculum concentration, temperature, and carbon sources on tannase production during solid state fermentation of cashew apple bagasse. Biotechnol. Bioprocess Eng. 13: 571-576. https://doi.org/10.1007/s12257-008-0014-7
  40. Sabu, A., C. Augur, C. Swati, and A. Pandey. 2006. Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. Process Biochem. 41: 575-580. https://doi.org/10.1016/j.procbio.2005.05.011
  41. Sabu, A., A. Pandey, M. Jaafar Daud, and G. Szakacs. 2005. Tamarind seed powder and palm kernel cake: Two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour. Technol. 96: 1223-1228. https://doi.org/10.1016/j.biortech.2004.11.002
  42. Selwal, M., A. Yadav, K. Selwal, N. Aggarwal, R. Gupta, and S. Gautam. 2010. Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World J. Microbiol. Biotechnol. 26: 599-605. https://doi.org/10.1007/s11274-009-0209-x
  43. Sharma, S., L. Agarwal, and R. Saxena. 2007. Statistical optimization for tannase production from Aspergillus niger under submerged fermentation. Ind. J. Microbiol. 47: 132-138. https://doi.org/10.1007/s12088-007-0026-6
  44. Sharma, S., T. K. Bhat, and R. K. Dawra. 2000. A spectrophotometric method for assay of tannase using rhodanine. Anal. Biochem. 279: 85-89. https://doi.org/10.1006/abio.1999.4405
  45. Viniegra-Gonzalez, G., E. Favela-Torres, C. Aguilar, S. D. J. Romero-Gomez, G. Diaz-Godinez, and C. Augur. 2003. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 13: 157-167. https://doi.org/10.1016/S1369-703X(02)00128-6
  46. Zhu, Y., J. P. Smits, W. Knol, and J. Bol. 1994. A novel solid-state fermentation system using polyurethane foam as inert carrier. Biotechnol. Lett. 16: 643-648. https://doi.org/10.1007/BF00128615

Cited by

  1. Statistical Optimization for Monacolin K and Yellow Pigment Production and Citrinin Reduction by Monascus purpureus in Solid-State Fermentation vol.23, pp.3, 2011, https://doi.org/10.4014/jmb.1206.06068
  2. The use of co-culturing in solid substrate cultivation and possible solutions to scientific challenges vol.7, pp.4, 2011, https://doi.org/10.1002/bbb.1389
  3. PRODUCTION OF TANNASE UNDER SOLID-STATE FERMENTATION AND ITS APPLICATION IN DETANNIFICATION OF GUAVA JUICE vol.44, pp.3, 2011, https://doi.org/10.1080/10826068.2013.812566
  4. Use of chickpea (Cicer arietinum L.) milling agrowaste for the production of tannase using co-cultures of Aspergillus awamori MTCC 9299 and Aspergillus heteromorphus MTCC 8818 vol.65, pp.3, 2011, https://doi.org/10.1007/s13213-014-0965-1
  5. Optimization of Ellagitannase Production byAspergillus nigerGH1 by Solid-State Fermentation vol.45, pp.7, 2011, https://doi.org/10.1080/10826068.2014.940965
  6. Variability among strains of Aspergillus section Nigri with capacity to degrade tannic acid isolated from extreme environments vol.199, pp.1, 2011, https://doi.org/10.1007/s00203-016-1277-6
  7. Study of enzymatic saccharification of Agave leaves biomass to yield fermentable sugars vol.7, pp.1, 2011, https://doi.org/10.1007/s13205-017-0714-9
  8. Juice clarification with tannases from Aspergillus carneus URM5577 produced by solid-state fermentation using Terminalia catappa L. leaves vol.16, pp.19, 2011, https://doi.org/10.5897/ajb2017.15958
  9. Evaluation of model parameters for growth, tannic acid utilization and tannase production in Bacillus gottheilii M2S2 using polyurethane foam blocks as support vol.7, pp.5, 2011, https://doi.org/10.1007/s13205-017-0909-0
  10. Optimization of chromium and tannic acid bioremediation by Aspergillus niveus using Plackett–Burman design and response surface methodology vol.7, pp.1, 2011, https://doi.org/10.1186/s13568-017-0504-0
  11. Kinetic, thermodynamic parameters and in vitro digestion of tannase from Aspergillus tamarii URM 7115 vol.205, pp.10, 2011, https://doi.org/10.1080/00986445.2018.1452201
  12. Solid state fermentation of Bacillus gottheilii M2S2 in laboratory-scale packed bed reactor for tannase production vol.48, pp.9, 2011, https://doi.org/10.1080/10826068.2018.1509086
  13. Towards the production of fungal biocontrol candidates using inert supports: a case of study of Trichoderma asperellum in a pilot fixed bed fermenter vol.29, pp.2, 2019, https://doi.org/10.1080/09583157.2018.1542486
  14. Modeling and optimization of tannase production with Triphala in packed bed reactor by response surface methodology, genetic algorithm, and artificial neural network vol.9, pp.7, 2011, https://doi.org/10.1007/s13205-019-1763-z
  15. Effects of Rhodotorula mucilaginosa fermentation product on the laying performance, egg quality, jejunal mucosal morphology and intestinal microbiota of hens vol.128, pp.1, 2011, https://doi.org/10.1111/jam.14467
  16. Co-production of gallic acid and a novel cell-associated tannase by a pigment-producing yeast, Sporidiobolus ruineniae A45.2 vol.19, pp.None, 2011, https://doi.org/10.1186/s12934-020-01353-w