DOI QR코드

DOI QR Code

Wewakamide A and Guineamide G, Cyclic Depsipeptides from the Marine Cyanobacteria Lyngbya semiplena and Lyngbya majuscula

  • Han, Bingnan (Department of Ocean Science and Engineering, Zhejiang University) ;
  • Gross, Harald (Institute for Pharmaceutical Biology, University of Bonn) ;
  • Mcphail, Kerry L. (College of Pharmacy, Oregon State University) ;
  • Goeger, Doug (College of Pharmacy, Oregon State University) ;
  • Maier, Claudia S. (Department of Chemistry, Oregon State University) ;
  • Gerwick, William H. (Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego)
  • Received : 2011.05.11
  • Accepted : 2011.06.03
  • Published : 2011.09.28

Abstract

Two new cyclic depsipeptides wewakamide A (1) and guineamide G (2) have been isolated from the marine cyanobacterium Lyngbya semiplena and Lyngbya majuscula, respectively, collected from Papua New Guinea. The amino and hydroxy acid partial structures of wewakamide A and guineamide G were elucidated through extensive spectroscopic techniques, including HR-FABMS, 1D $^1H$ and $^{13}C$ NMR, as well as 2D COSY, HSQC, HSQC-TOCSY, and HMBC spectra. The sequence of the residues of wewakamide A was determined through a combination of ESI-MS/MS, HMBC, and ROESY. Wewakamide A possesses a ${\beta}$-amino acid, 3-amino-2-methylbutanoic acid (Maba) residue, which has only been previously identified in two natural products, guineamide B (3) and dolastatin D (4). Although both new compounds (1,2) showed potent brine shrimp toxicity, only guineamide G displayed significant cytotoxicity to a mouse neuroblastoma cell line with $LC_{50}$ values of 2.7 ${\mu}M$.

Keywords

References

  1. Desikachary, T. V. 1957. Electron microscope studies on diatoms. J. R. Microsc. Soc. 76: 9-36.
  2. Han, B., D. Goeger, C. S. Maier, and W. H. Gerwick. 2005. The wewakpeptins, cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J. Org. Chem. 70: 3133-3139. https://doi.org/10.1021/jo0478858
  3. Han, B., K. L. McPhail, A. Ligresti, V. Di Marzo, and W. H. Gerwick. 2003. Semiplenamides A-G, fatty acid amides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J. Nat. Prod. 66: 1364-1368. https://doi.org/10.1021/np030242n
  4. Han, B. N., H. Gross, D. E. Goeger, S. L. Mooberry, and W. H. Gerwick. 2006. Aurilides B and C, cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 69: 572-575. https://doi.org/10.1021/np0503911
  5. Han, B. N., K. L. McPhail, H. Gross, D. E. Goeger, S. L. Mooberry, and W. H. Gerwick. 2005. Isolation and structure of five lyngbyabellin derivatives from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. Tetrahedron 61: 11723-11729. https://doi.org/10.1016/j.tet.2005.09.036
  6. Han, B. N., U. M. Reinscheid, W. H. Gerwick, and H. Gross. 2011. The structure elucidation of isomalyngamide K from the marine cyanobacterium Lyngbya majuscula by experimental and DFT computational methods. J. Molec. Struct. 989: 109-113. https://doi.org/10.1016/j.molstruc.2011.01.012
  7. Jones, A. C., E. A. Monroe, E. B. Eisman, L. Gerwick, D. H. Sherman, and W. H. Gerwick. The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat. Prod. Rep. 27: 1048-1065. https://doi.org/10.1039/c000535e
  8. Liu, Y., B. K. Law, and H. Luesch. 2009. Apratoxin A reversibly inhibits the secretory pathway by preventing cotranslational translocation. Mol. Pharmacol. 76: 91-104. https://doi.org/10.1124/mol.109.056085
  9. Manger, R. L., L. S. Leja, S. Y. Lee, J. M. Hungerford, Y. Hokama, R. W. Dickey, et al. 1995. Detection of sodium channel toxins: Directed cytotoxicity assays of purified ciguatoxins, brevetoxins, saxitoxins, and seafood extracts. J. AOAC Int. 78: 521-527.
  10. Meyer, B. N., N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, and J. L. McLaughlin. 1982. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 45: 31-34. https://doi.org/10.1055/s-2007-971236
  11. Nagle, D. G., Y. D. Zhou, F. D. Mora, K. A. Mohammed, and Y. P. Kim. 2004. Mechanism targeted discovery of antitumor marine natural products. Curr. Med. Chem. 11: 1725-1756. https://doi.org/10.2174/0929867043364991
  12. Nunnery, J. K., E. Mevers, and W. H. Gerwick. 2010. Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol. 21: 787-793. https://doi.org/10.1016/j.copbio.2010.09.019
  13. Simmons, T. L., E. Andrianasolo, K. McPhail, P. Flatt, and W. H. Gerwick. 2005. Marine natural products as anticancer drugs. Mol. Cancer Ther. 4: 333-342.
  14. Simmons, T. L., R. C. Coates, B. R. Clark, N. Engene, D. Gonzalez, E. Esquenazi, et al. 2008. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc. Natl. Acad. Sci. USA 105: 4587-4594. https://doi.org/10.1073/pnas.0709851105
  15. Sone, H., T. Nemoto, H. Ishiwata, M. Ojika, and K. Yamada. 1993. Isolation, structure, and synthesis of dolastatin-D, a cytotoxic cyclic depsipeptide from the sea hare Dolabella auricularia. Tetrahedr. Lett. 34: 8449-8452. https://doi.org/10.1016/S0040-4039(00)61356-4
  16. Tan, L. T. 2007. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68: 954-979. https://doi.org/10.1016/j.phytochem.2007.01.012
  17. Tan, L. T., T. Okino, and W. H. Gerwick. 2000. Hermitamides A and B, toxic malyngamide-type natural products from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 63: 952-955. https://doi.org/10.1021/np000037x
  18. Tan, L. T., N. Sitachitta, and W. H. Gerwick. 2003. The guineamides, novel cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 66: 764-771. https://doi.org/10.1021/np020492o

Cited by

  1. Marine natural products vol.30, pp.2, 2013, https://doi.org/10.1039/c2np20112g
  2. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry vol.6, pp.11, 2011, https://doi.org/10.3390/toxins6113058
  3. Alkynyl-Containing Peptides of Marine Origin: A Review vol.14, pp.11, 2011, https://doi.org/10.3390/md14110216
  4. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential vol.8, pp.None, 2017, https://doi.org/10.3389/fphar.2017.00828
  5. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade vol.15, pp.5, 2011, https://doi.org/10.3390/md15050132
  6. Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae vol.6, pp.None, 2011, https://doi.org/10.7554/elife.24214
  7. Marine Natural Peptides: Determination of Absolute Configuration Using Liquid Chromatography Methods and Evaluation of Bioactivities vol.23, pp.2, 2018, https://doi.org/10.3390/molecules23020306
  8. Antiproliferative, neurotoxic, genotoxic and mutagenic effects of toxic cyanobacterial extracts vol.11, pp.4, 2011, https://doi.org/10.2478/intox-2018-0026