DOI QR코드

DOI QR Code

Antidiabetic Activities of Extract from Malva verticillata Seed via the Activation of AMP-Activated Protein Kinase

  • Received : 2011.04.14
  • Accepted : 2011.05.28
  • Published : 2011.09.28

Abstract

Stimulation of AMP-activated protein kinase (AMPK) signaling followed by increase of glucose uptake in L6 myotubes were studied with organic solvent extract of Malva verticillata (MV) seeds. Ethanol extract of M. verticillata seeds (MVE) significantly increased the phosphorylation level of AMPK, acetyl-CoA carboxylase (ACC), and glucose uptake in L6 myotube cells. The MVE was fractionated with n-hexane (MVE-H), chloroform (MVE-C), ethylacetate (MVE-E), n-butanol (MVE-B), and water (MVE-W). MVE-H (150 ${\mu}g$/ml) showed the highest phosphorylating activity and increased glucose uptake by 2.3-fold. Oral administration of MVE-H (40 mg/kg) for 4 weeks to type 2 diabetic (db/db) mice reduced non-fasting and fasting blood glucose levels by 17.1% and 23.3%, respectively. Phosphorylation levels of AMPK and ACC in the soleus muscle and liver tissue of db/db mice were significantly increased by the administration of MVE-H. MVE-H was further fractionated using preparative HPLC to identify the AMPK-activating compounds. The NMR and GC-MS analyses revealed that ${\beta}$-sitosterol was a major effective compound in MVE-H. Phosphorylation levels of AMPK and ACC, and glucose uptake were significantly increased by the treatment of MVE-S (${\beta}$-sitosterol) isolated from M. verticillata to L6 cells, and these effects were attenuated by an AMPK inhibitor (Compound C) pretreatment. These results, taken together, demonstrate that increased glucose uptake in L6 myotubes by MVE-H treatment is mainly accomplished through the activation of AMPK. Our finding suggests that the extract isolated from M. verticillata seed would be beneficial for the treatment of metabolic disease including type 2 diabetes and hyperlipidemia.

Keywords

References

  1. Bailey, C. J. and C. Day. 1989. Traditional plant medicines as treatments for diabetes. Diabetes Care 12: 553-564. https://doi.org/10.2337/diacare.12.8.553
  2. Budavari, S. 1989. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 11th Ed. Merck and Co., Inc. Rahway, NJ.
  3. Buhl, E. S., N. Jessen, R. Pold, T. Ledet, A. Flyvbjerg, and S. B. Pedersen. 2002. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes 51: 2199-2206. https://doi.org/10.2337/diabetes.51.7.2199
  4. Chen, H., R. Feng, Y. Guo, L. Sun, and J. Jiang. 2001. Hypoglycemic effects of aqueous extract of Rhizoma polygonati odorati in mice and rats. J. Ethnopharmacol. 74: 225-229. https://doi.org/10.1016/S0378-8741(00)00359-7
  5. Cool, B., B. Zinker, W. Chiou, L. Kifle, N. Cao, M. Perham, et al. 2006. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3: 403-416. https://doi.org/10.1016/j.cmet.2006.05.005
  6. DeFronzo, R. A., E. Jacot, E. Jequier, E. Maeder, J. Wahren, and J. P. Felber. 1981. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimety and hepatic and femoral venous catheterization. Diabetes 30: 1000-1007. https://doi.org/10.2337/diab.30.12.1000
  7. Duncan, D. M. 1957. Multiple-range tests for correlated and heteroscedastic means. Biometrics 13: 164-170. https://doi.org/10.2307/2527799
  8. Fridewald, W. T., R. I. Levy, and D. S. Fedreicson. 1979. Estimation of concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499-502.
  9. Fryer, L. G., F. Foufelle, K. Barnes, S. A. Baldwin, A. Woods, and D. Carling. 2002. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. Biochem. J. 363: 167-174. https://doi.org/10.1042/0264-6021:3630167
  10. Fuller, J. H., M. J. Shipley, G. G. Rose, R. J. Jarrett, and H. Keen. 1980. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet 1: 1373-1376.
  11. Garvey, W. T., L. Maianu, J. H. Zhu, G. Brechtel-Hook, P. Wallace, and A. D. Baron. 1998. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J. Clin. Invest. 101: 2377-2386. https://doi.org/10.1172/JCI1557
  12. Goad, L. J. 1991. Phytosterols, pp. 349-434. In B. V. Charlwood and D. V. Banhorp (eds.). Methods in Plant Biochemistry. Vol. 7. Academic Press, London.
  13. Goad, L. J. and T. Akihisa. 1997. Analysis of Sterols. Blackie Academic & Professional, London.
  14. Gonda, R., M. Tomoda, N. Shimizu, and M. Kanari. 1990. Characterization of an acidic polysaccharide from the seeds of Malva verticillata stimulating the phagocytic activity of cells of the RES. Plana Med. 56: 73-76. https://doi.org/10.1055/s-2006-960888
  15. Habib, N. S., K. A. Ismail, A. A. Tobary, and T. Abdel Azeim. 2000. Antilipidemic agents, Part IV: Synthesis and antilipidemic testing of some heterocyclic derivatives of hexadecyl and cyclohexyl hemisuccinate esters. Die Pharmazie 55: 495-499.
  16. Hardie, D. G. 2007. AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol. 47: 185-210. https://doi.org/10.1146/annurev.pharmtox.47.120505.105304
  17. Hardie, D. G., J. W. Scott, D. A. Pan, and E. R. Hudson. 2003. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546: 113-120. https://doi.org/10.1016/S0014-5793(03)00560-X
  18. Hayashi, T., M. F. Hirshman, N. Fujii, S. A. Habinowski, L. A. Witters, and L. J. Goodyear. 2000. Metabolic stress and altered glucose transport: Activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49: 527-531. https://doi.org/10.2337/diabetes.49.4.527
  19. Hurley, R. L., K. A. Anderson, J. M. Franzone, B. E. Kemp, A. R. Means, and L. A. Witters. 2005. The $Ca^{2+}$/calmodulindependent protein kinase kinase are AMP-activated protein kinase kinase. J. Biol. Chem. 280: 29060-29066. https://doi.org/10.1074/jbc.M503824200
  20. Jamaluddin, F., M. N. Lajis, and S. Mohamed. 1995. Hypoglycemic effect of stigmast-4-en-3-one, from Parkia speciosa empty pods. Food Chem. 54: 9-13. https://doi.org/10.1016/0308-8146(95)92656-5
  21. Jung, K. H., S. C. Kim, M. Y. Han, and H. J. Kim. 2007. The effect of Ginkgo biloba extract (GB) on glucose uptake in L6 rat skeletal muscle cells. Korea J. Herbol. 22: 155-161.
  22. Jung, K. H., E. Y. Ha, M. J. Kim, Y. K. Uhm, H. K. Kim, S. J. Hong, et al. 2006. Ganoderma lucidum extract stimulates glucose uptake in L6 rat skeletal muscle cells. Acta Biochim. Pol. 53: 597-601.
  23. Jung, U. J., N. I. Baek, H. G. Chung, M. H. Bang, T. S. Jeong, K. T. Lee, et al. 2008. Effect of the ethanol extract of the roots of Brassica rapa on glucose and lipid metabolism in C57BL/ KsJ-db/db mice. Clin. Nutr. 27: 158-167. https://doi.org/10.1016/j.clnu.2007.09.009
  24. Kemp, B. E., D. Stapleton, D. J. Campbell, Z. P. Chen, S. Murthy, and M. Walter. 2003. AMP-activated protein kinase, super metabolic regulator. Biochem. Soc. Trans. 31: 162-168. https://doi.org/10.1042/bst0310162
  25. Merrill, G. F., E. J. Kurth, D. G. Hardie, and W. W. Winder. 1997. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273: E1107-E1112.
  26. Kim, E. J., S. N. Jung, K. H. Son, S. R. Kim, T. Y. Ha, M. G. Park, et al. 2007. Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein kinase. Mol. Pharmacol. 72: 62-72. https://doi.org/10.1124/mol.107.034447
  27. Kim, S. H., S. H. Hyun, and S. Y. Choung. 2006. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J. Ethnopharmacol. 104: 119-123. https://doi.org/10.1016/j.jep.2005.08.059
  28. Lee, W. J., E. H. Koh, J. C. Won, M. S. Kim, J. Y. Park, and K. U. Lee. 2005. Obesity: The role of hypothalamic AMP-activated protein kinase in body weight regulation. Int. J. Biochem. Cell B 37: 2254-2259. https://doi.org/10.1016/j.biocel.2005.06.019
  29. Mu, J., J. T. Jr. Brozinick, O. Valladares, M. Bucan, and M. J. Birnbaum. 2001. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7: 1085-1094. https://doi.org/10.1016/S1097-2765(01)00251-9
  30. Musi, N. and L. J. Goodyear. 2003. AMP-activated protein kinase and muscle glucose uptake. Acta Physiol. Scand. 178: 337-345. https://doi.org/10.1046/j.1365-201X.2003.01168.x
  31. Natural Products Research Institute Seoul National University. 1998. Medicinal Plants in the Republic of Korea. World Health Organization Regional Office for the Western Pacific, Manila.
  32. Ruderman, N. and M. Prentki. 2004. AMP kinase and malonyl-CoA: Targets for therapy of the metabolic syndrome. Nat. Rev. Drug Discov. 3: 340-351. https://doi.org/10.1038/nrd1344
  33. Ruderman, N. and G. Shulman. 2005. The metabolic syndrome, pp. 1149-1166. In L. DeGroot and J. Jameson (eds.). Endocrinology. 5th Ed. Elsevier, Philadelphia.
  34. Somwar, R., G. Sweeney, T. Ramlal, and A. Klip. 1998. Stimulation of glucose and amino acid transport and activation of the insulin signaling pathways by insulin lispro in L6 skeletal muscle cells. Clin. Ther. 20: 125-140. https://doi.org/10.1016/S0149-2918(98)80040-4
  35. Tsarong, T. J. 1994. Tibetan Medicinal Plants. Tibetan Medical Publications, West Bengal.
  36. Viollet, B., M. Foretz, B. Guigas, S. Horman, R. Dentin, L. Bertrand, et al. 2006. Activation of AMP-activated protein kinase in the liver: A new strategy for the management of metabolic hepatic disorders. J. Physiol. 574: 41-53. https://doi.org/10.1113/jphysiol.2006.108506
  37. Zenimaru, Y., S. Takahashi, M. Takahahi, K. Yamada, T. Iwasaki, T. Iwasaki, et al. 2008. Glucose deprivation accelerates VLDL receptor-mediated TG-rich lipoprotein uptake by AMPK activation in skeletal muscle cells. Biochem. Biophys. Res. Commun. 368: 716-722. https://doi.org/10.1016/j.bbrc.2008.01.154
  38. Zhou, G., R. Myer, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, et al. 2001. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167-1174. https://doi.org/10.1172/JCI13505
  39. Zierath, J. R., L. He, A. Guma, E. Odegoard-Wahlstrom, A. Klip, and H. Wallberg-Henriksson. 1996. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 39: 1180-1189. https://doi.org/10.1007/BF02658504
  40. Zimmet, P., K. G. Alberti, and J. Shaw. 2001. Global and societal implications of the diabetes epidemic. Nature 414: 782-787. https://doi.org/10.1038/414782a

Cited by

  1. Anti-diabetic effects of Korean red pepper via AMPK and PPAR-γ activation in C2C12 myotubes vol.4, pp.2, 2011, https://doi.org/10.1016/j.jff.2012.02.016
  2. Citrus junos Tanaka Peel Extract Exerts Antidiabetic Effects via AMPK and PPAR- γ both In Vitro and In Vivo in Mice Fed a High-Fat Diet vol.2013, pp.None, 2011, https://doi.org/10.1155/2013/921012
  3. Activation of 5′AMP-activated protein kinase in skeletal muscle by exercise and phytochemicals vol.3, pp.1, 2011, https://doi.org/10.7600/jpfsm.3.55
  4. AMP-Activated Protein Kinase: Maintaining Energy Homeostasis at the Cellular and Whole-Body Levels vol.34, pp.None, 2011, https://doi.org/10.1146/annurev-nutr-071812-161148
  5. Applicability of Isolates and Fractions of Plant Extracts in Murine Models in Type II Diabetes: A Systematic Review vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/3537163
  6. Regulation of AMP-activated protein kinase by natural and synthetic activators vol.6, pp.1, 2011, https://doi.org/10.1016/j.apsb.2015.06.002
  7. Edible Flowers: A Rich Source of Phytochemicals with Antioxidant and Hypoglycemic Properties vol.64, pp.12, 2011, https://doi.org/10.1021/acs.jafc.5b03092
  8. Malva verticillata seed extracts upregulate the Wnt pathway in human dermal papilla cells vol.38, pp.2, 2011, https://doi.org/10.1111/ics.12268
  9. Determination of Key Active Components in Different Edible Oils Affecting Lipid Accumulation and Reactive Oxygen Species Production in HepG2 Cells vol.66, pp.45, 2011, https://doi.org/10.1021/acs.jafc.8b04563
  10. Activation of AMPK by Medicinal Plants and Natural Products: Its Role in Type 2 Diabetes Mellitus vol.19, pp.11, 2019, https://doi.org/10.2174/1389557519666181128120726
  11. AMPK Activity: A Primary Target for Diabetes Prevention with Therapeutic Phytochemicals vol.13, pp.11, 2011, https://doi.org/10.3390/nu13114050
  12. Modulation of Hair Growth Promoting Effect by Natural Products vol.13, pp.12, 2011, https://doi.org/10.3390/pharmaceutics13122163