References
- Ahmad, N., M. Hamayun, S. A. Khan, A. L. Khan, I. J. Lee, and D. H. Shin. 2010. Gibberellin-producing endophytic fungi isolated from Monochoria vaginalis. J. Microbiol. Biotechnol. 20: 1744-1749.
- Alonso-Ramirez, A., D. Rodriguez, D. Reyes, J. A. Jimenez, G. Nicolas, M. Lopez-Climent, et al. 2009. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol. 150: 1335-1344. https://doi.org/10.1104/pp.109.139352
- Aoki, T., T. Akasaki, and S. Ayabe. 2000. Flavonoids of leguminous plants: Structure, biological activity and biosynthesis. J. Plant Res. 113: 475-488. https://doi.org/10.1007/PL00013958
- Arnold, A. E., D. A. Henk, R. L. Eells, F. Lutzoni, and R. Vilgalys. 2007. Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99: 185-206. https://doi.org/10.3852/mycologia.99.2.185
- Arnold, A. E. 2008. Endophytic fungi: hidden components of tropical community ecology, pp. 254-271. In W. F. Carson and S. A. Schnitzer (eds.). Tropical Forest Community Ecology. John Wiley & Sons, Oxford, UK.
- Bacon, C. W. 1993. Abiotic stress tolerances (moisture, nutrients) and photo-synthesis in endophyte-infected tall fescue. Agri. Ecosyst. Environ. 44: 123-141. https://doi.org/10.1016/0167-8809(93)90042-N
- Bomke, C. and B. Tudzynski. 2009. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70: 1876-1893. https://doi.org/10.1016/j.phytochem.2009.05.020
- Catford, J. G., C. Staehelin, G. Larose, Y. Piche, and H. Vierheilig. 2006. Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285: 257-266. https://doi.org/10.1007/s11104-006-9012-8
- Cheplick, C. P. 2004. Recovery from drought stress in Lolium perenne (Poaceae): Are fungal endophytes detrimental? Am. J. Bot. 91: 1960-1968. https://doi.org/10.3732/ajb.91.12.1960
- Choi, W. Y., S. O. Rim, J. H. Lee, J. M. Lee, I. J. Lee, K. J. Cho, et al. 2005. Isolation of gibberellins-producing fungi from the root of several Sesamum indicum plants. J. Microbiol. Biotechnol. 15: 22-28.
- Dakora, F. D. and D. A. Phillips. 1996. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Mol. Plant Physiol. 49: 1-20. https://doi.org/10.1006/pmpp.1996.0035
- Fateh, S. H. and W. F. Fagan. 2002. Fungal endophytes: Common host plant symbionts but uncommon mutualists. Integ. Comp. Biol. 42: 360-368. https://doi.org/10.1093/icb/42.2.360
- Franck, C., J. Lammertyn, and B. Nicolai. 2005. Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears. Proceedings of 5th International Postharvest Symposium, Mencarelli F, Tonutti P (eds.). Acta Hort. 682: 1991-1998.
- Grant, M. R. and J. D. G. Jones. 2009. Hormone (dis)harmony moulds plant health and disease. Science 324: 750. https://doi.org/10.1126/science.1173771
- Gamalero, E., G. Berta, and B. R. Glick. 2009. The use of microorganisms to facilitate the growth of plants in saline soils, pp. 1-22. In M. S. Khan, A. Zaidi, and J. Mussarat, (eds.). Microbial Strategies for Crop Improvement. Springer-Verlag, Berlin, Heidelberg.
- Ganley, R. J., S. J. Brunsfeld, and G. Newcombe. 2004. A community of unknown, endophytic fungi in western white pine. Proc. Nat. Acad. Sci. USA 101: 10107-10112. https://doi.org/10.1073/pnas.0401513101
- Gough, C., C. Galera, J. Vasse, G. Webster, E. C. Cocking, and J. Denarie. 1997. Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571 10. Mol. Plant Microb Interact. 5: 560-570.
- Hamayun, M., S. A. Khan, I. Iqbal, B. Ahmad, and I. J. Lee. 2010. Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of crown daisy (Chrysanthemum coronarium). J. Microbiol. Biotechnol. 20: 202-207.
- Hamayun, M., S. A. Khan, A. L. Khan, J. H. Shin, and I. J. Lee. 2010. Exogenous gibberellic acid reprograms soybean to higher growth, and salt stress tolerance. J. Agric. Food Chem. 58: 7226-7232. https://doi.org/10.1021/jf101221t
- Herrera-Medina, M. J., S. Steinkellner, H. Vierheilig, J. A. O. Bote, and J. M. G. Garrido. 2007. Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol. 175: 554-564. https://doi.org/10.1111/j.1469-8137.2007.02107.x
- Hoffmann-Benning, S. and H. Kende. 1992. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 99: 1156-1161. https://doi.org/10.1104/pp.99.3.1156
- Hussain, T. M., T. Chandrasekhar, M. Hazara, Z. Sultan, B. K. Saleh, and G. R. Gopal. 2008. Recent advances in salt stress biology - a review. Biotech. Mol. Biol. Rev. 3: 8-13.
- Hyde, K. D. and K. Soytong. 2008. The fungal endophyte dilemma. Fungal Div. 33: 163-173.
- Iqbal, M. and M. Ashraf. 2010. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Env. Exp. Bot. DOI:10.1016/j.envexpbot.2010.06.002
- Kirakosyan, A., P. B. Kaufman, S. C. Chang, S. Warber, S. Bolling, and H. Vardapetyan. 2006. Regulation of isoavone production in hydroponically grown Pueraria montana (kudzu) by cork pieces, XAD-4, and methyl jasmonate. Plant Cell Rep. 25: 1387-1391. https://doi.org/10.1007/s00299-006-0198-2
- Khan, A. L., M. Hamayun, Y. H. Kim, S. M. Kang, and I. J. Lee. 2011. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol. Biochem. 49: 852-861. https://doi.org/10.1016/j.plaphy.2011.03.005
- Khan, A. L., M. Hamayun, Y. H. Kim, S. M. Kang, J. H. Lee, and I. J. Lee. 2011. Gibberellins-producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, plant growth and isoflavone biosynthesis in soybean under salt stress. Process Biochem. 46: 440-447. https://doi.org/10.1016/j.procbio.2010.09.013
- Khan, S. A., M. Hamayun, H. J. Yoon, H. Y. Kim, S. J. Suh, S. K. Hwang, et al. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231-237. https://doi.org/10.1186/1471-2180-8-231
- Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011. https://doi.org/10.1104/pp.116.3.1003
- Mauch-Mani, B. and F. Mauch. 2005. The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8: 409-414. https://doi.org/10.1016/j.pbi.2005.05.015
- Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Murakami-Mizukami, Y., Y. Yamamoto, and S. Yamaki. 1991. Analyses of indole acetic acid and abscisic acid contents in nodules of soybean plants bearing VA mycorrhizas. Soil Sci. Plant Nutr. 37: 291-298. https://doi.org/10.1080/00380768.1991.10415039
- Oses, R., S. Valenzuela, J. Freer, E. Sanfuentes, and J. Rodriguez. 2008. Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Div. 33: 77-86.
- Phommalth, S., Y. Jeong, Y. Kim, K. H. Dhakal, and Y. Hwang. 2008. Effects of light treatment on isoflavone content of germinated soybean seeds. J. Agric. Food Chem. 56: 10123-10128. https://doi.org/10.1021/jf802118g
- Pozo, M. J. and C. Azcon-Aguilar. 2007. Unraveling mycorrhizainduced resistance. Curr. Opin. Plant Biol. 10: 393-398. https://doi.org/10.1016/j.pbi.2007.05.004
- Qi, Q. G., P. A. Rose, G. D. Abrams, D. C. Taylor, S. R. Abrams, and A. J. Cutler. 1998. Abscisic acid metabolism, 3-ketoacyl-coenzyme A synthase gene expression and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol. 117: 979-987. https://doi.org/10.1104/pp.117.3.979
- Rajjou, L., M. Belghazi, R. Huguet, C. Robin, A. Moreau, C. Job, and D. Job. 2006. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141: 910-923. https://doi.org/10.1104/pp.106.082057
- Richardson, A. E., J. Barea, A. M. Mcneill, and C. Prigent-Combaret. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321: 305-339. https://doi.org/10.1007/s11104-009-9895-2
- Rijke, E. D., L. Aardenburg, J. V. Dijk, F. Ariese, W. H. O. Ernst, C. Gooijer, and U. A. Brinkman. 2005. Changed isoflavone levels in red clover (Trifolium pratense L.) leaves with disturbed root nodulation in response to waterlogging. J. Chem. Ecol. 31: 1285-1298. https://doi.org/10.1007/s10886-005-5286-1
- Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. Y. Steiner, and M. D. Hunt. 1996. Systemic acquired resistance. Plant Cell 8: 809-1819.
- Sawada, Y., M. Aoki, K. Nakaminami, W. Mitsuhashi, K. Tatematsu, T. S. Kushiro, et al. 2008. Phytochrome- and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds. Plant Physiol. 146: 1386-1396. https://doi.org/10.1104/pp.107.115162
- Schulz, B. and C. Boyle. 2005. The endophytic continuum. Mycol. Res. 109: 661-686. https://doi.org/10.1017/S095375620500273X
- Seskar, M., V. Shulaev, and I. Raskin. 1998. Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol. 116: 387-392. https://doi.org/10.1104/pp.116.1.387
- Shaw, L. J., P. Morris, and J. E. Hooker. 2006. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 8: 1867-1880. https://doi.org/10.1111/j.1462-2920.2006.01141.x
- Sharifi, M., M. Ghorbanli, and H. Ebrahimzadeh. 2007. Improved growth of salinity-stressed soybean after inoculation with pretreated mycorrhizal fungi. J. Plant Physiol. 164: 1144-1151. https://doi.org/10.1016/j.jplph.2006.06.016
- Subramanian, S., G. Stacey, and O. Yu. 2006. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J. 48: 261-273. https://doi.org/10.1111/j.1365-313X.2006.02874.x
- Taylor, D. L. and T. D. Bruns. 1999. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: Minimal overlap between the mature forest and resistant propagule communities. Microbial Ecol. 8: 1837-1850.
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Volpin, H., D. A. Phillips, Y. Okon, and Y. A. Kapulnik. 1995. Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol. 108: 1449-1454. https://doi.org/10.1104/pp.108.4.1449
- Yu, O. and B. McGonigle. 2005. Metabolic engineering of isoavone biosynthesis. Adv. Agron. 86: 147-190.
- Wang, Y., S. Mopper, and K. H. Hasenstein. 2001. Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J. Chem. Ecol. 27: 327-342. https://doi.org/10.1023/A:1005632506230
- Waller, F., B. Achatz, H. Baltruschat, J. Fodor, K. Becker, M. Fischer, et al. 2005. The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc. Natl. Acad. Sci. USA 102: 13386-13391. https://doi.org/10.1073/pnas.0504423102
Cited by
- Fungal Diversity and Plant Growth Promotion of Endophytic Fungi from Six Halophytes in Suncheon Bay vol.22, pp.11, 2011, https://doi.org/10.4014/jmb.1205.05010
- 부안갯벌 생태계 복원을 위한 칠면초와 해홍나물의 내생진균류에 대한 유전학적 다양성 분석 vol.40, pp.4, 2012, https://doi.org/10.4014/kjmb.1207.07025
- 고창갯벌의 염생식물 뿌리로부터 분리된 내생진균의 다양성 vol.40, pp.2, 2011, https://doi.org/10.4489/kjm.2012.40.2.86
- 무안 염습지에 자생하는 염생식물(halophyte)의 뿌리로부터 분리된 내생진균(endophytic fungi)의 유전학적 다양성 vol.22, pp.7, 2012, https://doi.org/10.5352/jls.2012.22.7.970
- 칠면초의 뿌리로부터 분리된 Fusarium solani에 의해 생산된 지베렐린 A4 vol.22, pp.12, 2011, https://doi.org/10.5352/jls.2012.22.12.1718
- Cadophora malorum Cs‐8‐1 as a new fungal strain producing gibberellins isolated from Calystegia soldanella vol.53, pp.7, 2011, https://doi.org/10.1002/jobm.201200002
- IAA-Producing Penicillium sp. NICS01 Triggers Plant Growth and Suppresses Fusarium sp.-Induced Oxidative Stress in Sesame (Sesamum indicum L.) vol.23, pp.6, 2011, https://doi.org/10.4014/jmb.1209.09045
- Spermine Promotes Acclimation to Osmotic Stress by Modifying Antioxidant, Abscisic Acid, and Jasmonic Acid Signals in Soybean vol.32, pp.1, 2011, https://doi.org/10.1007/s00344-012-9274-8
- Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity vol.29, pp.11, 2011, https://doi.org/10.1007/s11274-013-1378-1
- Endophytes Aspergillus caespitosus LK12 and Phoma sp. LK13 of Moringa peregrina produce gibberellins and improve rice plant growth vol.9, pp.1, 2011, https://doi.org/10.1080/17429145.2014.917384
- Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease vol.9, pp.1, 2011, https://doi.org/10.1080/17429145.2014.930524
- 태안반도에 자생하는 해안식물 뿌리에서 분리한 내생진균의 다양성 분석 vol.42, pp.1, 2014, https://doi.org/10.4489/kjm.2014.42.1.79
- 태안반도에 자생하는 염생식물의 뿌리로부터 분리한 내생 진균의 다양성 vol.42, pp.4, 2011, https://doi.org/10.4489/kjm.2014.42.4.269
- A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress vol.65, pp.1, 2011, https://doi.org/10.1007/s13213-014-0894-z
- Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity vol.118, pp.2, 2011, https://doi.org/10.1111/jam.12696
- Endophytic fungi: resource for gibberellins and crop abiotic stress resistance vol.35, pp.1, 2011, https://doi.org/10.3109/07388551.2013.800018
- 동해안 자생식물로부터 분리된 내생균류의 식물생장촉진활성 및 동정 vol.51, pp.1, 2011, https://doi.org/10.7845/kjm.2015.5005
- Impact of a natural soil salinity gradient on fungal endophytes in wild barley (Hordeum maritimum With.) vol.32, pp.11, 2011, https://doi.org/10.1007/s11274-016-2142-0
- Fungal root endophytes of Quercus robur subjected to flooding vol.46, pp.1, 2011, https://doi.org/10.1111/efp.12212
- 독도 번행초에서 분리된 내생균류의 배양적 특성과 Aspergillus tubingensis YH103의 gibberellin A7의 생산 vol.52, pp.1, 2016, https://doi.org/10.7845/kjm.2016.5071
- Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile vol.11, pp.None, 2011, https://doi.org/10.1016/j.gdata.2016.12.015
- Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile vol.11, pp.None, 2011, https://doi.org/10.1016/j.gdata.2016.12.015
- Effects of root endophytic fungi on response of Chenopodium quinoa to drought stress vol.219, pp.3, 2018, https://doi.org/10.1007/s11258-017-0791-1
- Fungal Diversity and Community Composition of Culturable Fungi in Stanhopea trigrina Cast Gibberellin Producers vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.00612
- A Survey of Culturable Fungal Endophytes From Festuca rubra subsp. pruinosa , a Grass From Marine Cliffs, Reveals a Core Microbiome vol.9, pp.None, 2011, https://doi.org/10.3389/fmicb.2018.03321
- Endophytes from the crop wild relative Hordeum secalinum L. improve agronomic traits in unstressed and salt-stressed barley vol.4, pp.1, 2011, https://doi.org/10.1080/23311932.2018.1549195
- Paddy Chlorophyll Concentrations in Drought Stress Condition and Endophytic Fungi Application vol.156, pp.None, 2011, https://doi.org/10.1088/1755-1315/156/1/012040
- Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean vol.14, pp.1, 2011, https://doi.org/10.1080/17429145.2019.1640294
- Synthesis of Biologically Active Gibberellins GA4 and GA7 by Microorganisms vol.81, pp.2, 2019, https://doi.org/10.15407/microbiolj81.02.090
- Benefits of a root fungal endophyte on physiological processes and growth of the vulnerable legume tree Prosopis chilensis (Fabaceae) vol.12, pp.2, 2019, https://doi.org/10.1093/jpe/rty019
- Tackling Salinity in Sustainable Agriculture-What Developing Countries May Learn from Approaches of the Developed World vol.11, pp.17, 2011, https://doi.org/10.3390/su11174558
- Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions vol.9, pp.12, 2011, https://doi.org/10.3390/agronomy9120779
- Soybean Fungal Endophytes Alternaria and Diaporthe spp. are Differentially Impacted by Fungicide Application vol.104, pp.1, 2020, https://doi.org/10.1094/pdis-05-19-1001-re
- Investigation of the mycelial morphology of Monascus and the expression of pigment biosynthetic genes in high-salt-stress fermentation vol.104, pp.6, 2020, https://doi.org/10.1007/s00253-020-10389-2
- Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications vol.10, pp.3, 2011, https://doi.org/10.1007/s13205-020-2081-1
- Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus vol.11, pp.7, 2011, https://doi.org/10.3390/metabo11070428
- Halotolerant-Koccuria rhizophila (14asp)-Induced Amendment of Salt Stress in Pea Plants by Limiting Na+ Uptake and Elevating Production of Antioxidants vol.11, pp.10, 2011, https://doi.org/10.3390/agronomy11101907