DOI QR코드

DOI QR Code

Multistage Operation of Airlift Photobioreactor for Increased Production of Astaxanthin from Haematococcus pluvialis

  • Choi, Yoon-E (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Yun, Yeoung-Sang (Department of BIN Fusion Technology and School of Chemical Engineering, Chonbuk National University) ;
  • Park, Jong-Moon (Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Yang, Ji-Won (Department of Chemical and Biomolecular Engineering, KAIST)
  • Received : 2011.03.29
  • Accepted : 2011.06.24
  • Published : 2011.10.28

Abstract

An internally radiating photobioreactor was applied for the production of astaxanthin using the unicellular green alga Haematococcus pluvialis. The cellular morphology of H. pluvialis was significantly affected by the intensity of irradiance of the photobioreactor. Small green cells were widespread under lower light intensity, whereas big reddish cells were predominant under high light intensity. For these reasons, growth reflected by cell number or dry weight varied markedly with light conditions. Even under internal illumination of the photobioreactor, light penetration was significantly decreased as algal cells grew. Therefore, we employed a multistage process by gradually increasing the internal illuminations for astaxanthin production. Our results revealed that a multistage process might be essential to the successful operation of a photobioreactor for astaxnthin production using H. pluvialis.

Keywords

References

  1. Borowitzka, M. A. 1999. Commercial production of microalgae: Ponds, tanks, tubes, and fermenters. J. Biotechnol. 70: 313-321. https://doi.org/10.1016/S0168-1656(99)00083-8
  2. Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol. Plant 108: 111-117. https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  3. Boussiba, S., W. Bing, A. Zarka, J. P. Yuan, and F. Chen. 1999. Changes in pigment profiles of Haematococcus pluvialis during exposure to environmental stresses. Biotechnol. Lett. 21: 601-604. https://doi.org/10.1023/A:1005507514694
  4. Boussiba, S. and A. Vonshak. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32: 1077-1082.
  5. Choi, Y. E., Y. S. Yun, and J. M. Park. 2002. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol. Prog. 18: 1170-1175. https://doi.org/10.1021/bp025549b
  6. Davies, B. H. 1976. Carotenoids, pp. 38-165. In: Chemistry and Biochemistry of Plant Pigments, 2nd Ed. Academic Press, London.
  7. Fabregas, J., A. Dominguez, D. Alvarez, T. Lamela, and A. Otero. 1998. Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnol. Lett. 20: 623-626. https://doi.org/10.1023/A:1005322416796
  8. Fabregas, J., A. Dominguez, M. Regueiro, A. Maseda, and A. Otero. 2000. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 53: 530-535. https://doi.org/10.1007/s002530051652
  9. Fabregas, J., A. Otero, A. Maseda, and A. Dominguez. 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89: 65-71. https://doi.org/10.1016/S0168-1656(01)00289-9
  10. Goodwin, T. W. 1984. The Biochemistry of the Carotenoids, Vols. 1-2. Chapman and Hall, New York.
  11. Goodwin, T. W. and M. Jamikorn. 1954. Studies in carotenogenesis. II. Carotenoid synthesis in the alga Haematococcus pluvialis. Biochem. J. 57: 376-381.
  12. Harker, M., A. J. Tsavalos, and A. J. Young. 1995. Use of response surface methodology to optimize carotenogenesis in the microalga Haematococcus pluvialis. J. Appl. Phycol. 7: 399-406. https://doi.org/10.1007/BF00003797
  13. Harker, M., A. J. Tsavalos, and A. J. Young. 1996. Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis. Bioresource Technol. 55: 207-214. https://doi.org/10.1016/0960-8524(95)00002-X
  14. Kakizono, T., M. Kobayashi, and S. Nagai. 1992. Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga Haematococcus pluvialis. J. Ferment. Bioeng. 74: 403-405. https://doi.org/10.1016/0922-338X(92)90041-R
  15. Kobayashi, M., T. Kakizono, and S. Nagai. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867-873.
  16. Kobayashi, M., T. Kakizono, N. Nishio, and S. Nagai. 1992. Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga Haematococcus pluvialis. J. Ferment. Bioeng. 74: 61-63. https://doi.org/10.1016/0922-338X(92)90271-U
  17. Kobayashi, M., Y. Kurimura, T. Kakizono, N. Nishio, and Y. Tsuji. 1997. Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J. Ferment. Bioeng. 84: 94-97. https://doi.org/10.1016/S0922-338X(97)82794-8
  18. Kobayashi, M., K. Toshide, and S. Nagai. 1991. Astaxanthin production by a green alga Haematococcus pluvialis accompanied with morphological changes in acetate media. J. Ferment. Bioeng. 75: 335-339.
  19. Lee, Y. K. 2001. Microalgal mass culture systems and methods: Their limitation and potential. J. Appl. Phycol. 13: 307-315. https://doi.org/10.1023/A:1017560006941
  20. Lorenz, R. T. and G. R. Cysewski. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160-167. https://doi.org/10.1016/S0167-7799(00)01433-5
  21. Meyers, S. P. 1994. Developments in world aquaculture, feed formulations, and role of carotenoids. Pure Appl. Chem. 66: 1069-1076. https://doi.org/10.1351/pac199466051069
  22. Ogbonna, J. C., H. Yada, H. Masui, and H. Tanaka. 1996. A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells. J. Ferment. Bioeng. 82: 61-67. https://doi.org/10.1016/0922-338X(96)89456-6
  23. Palozza, P. and N. I. Krinsky. 1992. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch. Biochem. Biophys. 197: 291-295.
  24. Richmond, A. 2000. Microalgal biotechnology at the turn of the millennium: A personal view. J. Appl. Phycol. 12: 441-451. https://doi.org/10.1023/A:1008123131307
  25. Suh, I. S. and S. B. Lee. 2001. Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor. J. Appl. Phycol. 13: 381-388. https://doi.org/10.1023/A:1017979431852
  26. Yun, Y. S. and J. M. Park. 2001. Attenuation of monochromatic and polychromatic lights in Chlorella vulgaris suspension. Appl. Microbiol. Biotechnol. 55: 765-770. https://doi.org/10.1007/s002530100639

Cited by

  1. Determination of the time transferring cells for astaxanthin production considering two-stage process of Haematococcus pluvialis cultivation vol.102, pp.24, 2011, https://doi.org/10.1016/j.biortech.2011.09.092
  2. Marine microorganisms: An emerging avenue in modern nutraceuticals and functional foods vol.56, pp.None, 2014, https://doi.org/10.1016/j.foodres.2013.12.022
  3. Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor vol.26, pp.7, 2011, https://doi.org/10.4014/jmb.1601.01082
  4. Exploiting microorganisms to develop improved functional meat sausages: A review vol.33, pp.2, 2011, https://doi.org/10.1080/87559129.2016.1175012
  5. Photoautotrophic cultivating options of freshwater green microalgal Chlorococcum humicola for biomass and carotenoid production vol.48, pp.4, 2018, https://doi.org/10.1080/10826068.2018.1446152
  6. Photosynthesis and growth kinetics of Chlorella vulgaris R-117 cultured in an internally LED‑illuminated photobioreactor vol.57, pp.1, 2011, https://doi.org/10.32615/ps.2019.031