DOI QR코드

DOI QR Code

Production of a Platelet Aggregation Inhibitor, Salmosin, by High Cell Density Fermentation of Recombinant Escherichia coli

  • Received : 2011.05.12
  • Accepted : 2011.07.12
  • Published : 2011.10.28

Abstract

Optimal conditions for a high cell density fermentation were investigated in a recombinant Escherichia coli producing salmosin, a platelet aggregation inhibitor. The optimized carbon and nitrogen sources were glycerol 10 g/l, yeast extract 30 g/l, and bacto-tryptone 10 g/l, yielding the dry cell weight (DCW) of 10.61 g/l in a 500 ml flask culture. The late-stage induction with 1% L-arabinose in a 5 l jar fermentor showed the highest DCW of 65.70 g/l after 27 h of the fed-batch fermentation. Around 2,200 mg/l of the protein was expressed as an inclusion body that was then refolded to obtain the active salmosin of 96 mg/l. We also confirmed the inhibitory activity against platelet aggregation of the active salmosin from the high cell density fermentation.

Keywords

References

  1. Bae, C. S., M. S. Hong, S. G. Chang, D. Y. Kim, and H. C. Shin. 1997. Optimization of fusion proinsulin production by high cell-density fermentation of recombinant E. coli. Biotechnol. Bioprocess Eng. 2: 27-32. https://doi.org/10.1007/BF02932459
  2. Curtis-Fisk, J., R. M. Spencer, and D. P. Weliky. 2008. Isotopically labeled expression in E. coli, purification, and refolding of the full ectodomain of the influenza virus membrane fusion protein. Protein Expr. Purif. 61: 212-219. https://doi.org/10.1016/j.pep.2008.06.009
  3. Dasari, V. K. R., D. Are, V. R. Joginapally, L. N. Mangamoori, and K. S. B. R. Adibhatla. 2008. Optimization of the downstream process for high recovery of rhG-CSF from inclusion bodies expressed in Escherichia coli. Process Biochem. 43: 566-575. https://doi.org/10.1016/j.procbio.2008.01.024
  4. Dennis, M. S., W. J. Henzel, R. M. Pitti, M. T. Lipari, M. A. Napier, T. A. Deisher, S. Bunting, and R. A. Lazarus. 1990. Platelet glycoprotein IIb-IIIa protein antagonists from snake venoms: Evidence for a family of platelet-aggregation inhibitors. Proc. Natl. Acad. Sci. USA 87: 2471-2475. https://doi.org/10.1073/pnas.87.7.2471
  5. Eiteman, M. A. and E. Altman. 2006. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530-536. https://doi.org/10.1016/j.tibtech.2006.09.001
  6. Gould, R. J., M. A. Polokoff, P. A. Friedman, T. F. Huang, J. C. Holt, J. J. Cook, and S. Niewiarowski. 1990. Disintegrins: A family of integrin inhibitory proteins from viper venoms. Proc. Soc. Exp. Biol. Med. 195: 168-171.
  7. Hong, S. Y., H. Lee, W. K. You, K. H. Chung, D. S. Kim, and K. Song. 2003. The snake venom disintegrin salmosin induces apoptosis by disassembly of focal adhesions in bovine capillary endothelial cells. Biochem. Biophys. Res. Commun. 302: 502-508. https://doi.org/10.1016/S0006-291X(03)00213-4
  8. Hong, S. Y., Y. S. Koh, K. H. Chung, and D. S. Kim. 2002. Snake venom disintegrin, saxatilin, inhibits platelet aggregation, human umbilical vein endothelial cell proliferation, and smooth muscle cell migration. Thromb. Res. 105: 79-86. https://doi.org/10.1016/S0049-3848(01)00416-9
  9. Huang, T. F., C. Z. Liu, C. H. Ouyang, and C. M. Teng. 1991. Halysin, an antiplatalet Arg-Gly-Asp-containing snake venom peptide, as fibrinogen receptor antagonist. Biochem. Pharmacol. 42: 1209-1219. https://doi.org/10.1016/0006-2952(91)90256-5
  10. Jeong, K. J. and M. Rani. 2011. High-level production of a single chain antibody against anthrax toxin in Escherichia coli by high cell density cultivation. Bioprocess Biosyst. Eng. 34: 811-817. https://doi.org/10.1007/s00449-011-0531-1
  11. Kang, I. C., K. H. Chung, S. J. Lee, Y. D. Yoon, H. M. Moon, and D. S. Kim. 1998. Purification and molecular cloning of a platelet aggregation inhibitor from the snake (Agkistrodon halys brevicaudus) venom. Thromb. Res. 91: 65-73. https://doi.org/10.1016/S0049-3848(98)00053-X
  12. Kang, I. C., Y. D. Lee, and D. S. Kim. 1999. A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Res. 59: 3754-3760.
  13. Kim, S. J., N. J. Kim, C. Shin, and C. W. Kim. 2008. Optimization of culture condition for the production of $_D-amino$ acid oxidase in a recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 13: 144-149. https://doi.org/10.1007/s12257-008-0005-8
  14. Lee, C., W. J. Sun, B. W. Burgess, B. H. Junker, J. Reddy, B. C. Buckland, and R. L. Greasham. 1997. Process optimization for large-scale production of TGF-$\alpha$-PE40 in recombinant Escherichia coli: Effect of medium composition and induction timing on protein expression. J. Ind. Microbiol. Biotechnol. 18: 260-266. https://doi.org/10.1038/sj.jim.2900382
  15. Ma, L. Y. and P. G. Xiao. 1998. Effect of Panax notoginseng saponins on platelet aggregation in rats with middle cerebral artery occlusion or in vitro and on lipid fluidity platelet membrane. Phytother. Res. 12: 138-140. https://doi.org/10.1002/(SICI)1099-1573(199803)12:2<138::AID-PTR200>3.0.CO;2-C
  16. Min, C. K., J. W. Lee, K. H. Chung, and H. W. Park. 2010. Control of specific rate to enhance the production of a novel disintegrin, saxatilin, in recombinant Pichia pastoris. J. Biosci. Bioeng. 110: 314-319. https://doi.org/10.1016/j.jbiosc.2010.03.013
  17. Packham, M. A. and J. F. Mustard. 1977. Clinical pharmacology of platelets. Blood 50: 555-573.
  18. Park, Y. C., C. S. Kim, C. I. Kim, K. H. Choi, and J. H. Seo. 1997. Fed-batch fermentations of recombinant Escherichia coli to produce Bacillus macerans CGTase. J. Microbiol. Biotechnol. 7: 323-328.
  19. Passarinha, L. A., M. J. Bonifacio, and J. A. Queiroz. 2009. Application of a fed-batch bioprocess for the heterologous production of hSCOMT in Escherichia coli. J. Microbiol. Biotechnol. 19: 972-981. https://doi.org/10.4014/jmb.0812.658
  20. Quintas-Granados, L. I., E. Orozco, L. G. Brieba, R. Arroyo, and J. Ortega-Lopez. 2009. Purification, refolding and autoactiviation of the recombinant cysteine proteinase EhCP112 from Entamoeba histolytica. Protein Expr. Purif. 63: 26-32. https://doi.org/10.1016/j.pep.2008.09.006
  21. Savage, B., U. M. Marzec, B. H. Chao, L. A. Harker, J. M. Maraganore, and Z. M. Ruggeri. 1990. Binding of the snake venom-derived proteins applaggin and echistatin to the arginine-glycine- aspartic acid recognition site(s) on platelet glycoprotein IIb.IIIa complex inhibits receptor function. J. Biol. Chem. 265: 11766-11772.
  22. Singh, S. M. and A. K. Panda. 2005. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng. 99: 303-310. https://doi.org/10.1263/jbb.99.303
  23. Wu, T. S., Y. Y. Chan, M. J. Liou, F. W. Lin, L. S. Shi, and K. T. Chen. 1998. Platelet aggregation inhibitor from Murraya euchrestifolia. Phytother. Res. 12: S80-S82. https://doi.org/10.1002/(SICI)1099-1573(1998)12:1+3.0.CO;2-#
  24. Yee, L. and H. W. Blanch. 1992. Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Nat. Biotechnol. 10: 1550-1556. https://doi.org/10.1038/nbt1292-1550

Cited by

  1. Production of Salmosin, a Snake Venom-derived Disintegrin, in Recombinant Pichia pastoris Using High Cell Density Fed-batch Fermentation vol.17, pp.5, 2012, https://doi.org/10.1007/s12257-011-0647-9
  2. High-level Production of Creatine Amidinohydrolase from Arthrobacter nicotianae 23710 in Escherichia coli vol.175, pp.5, 2015, https://doi.org/10.1007/s12010-014-1460-7
  3. Recombinant Glargine Insulin Production Process Using Escherichia coli vol.26, pp.10, 2011, https://doi.org/10.4014/jmb.1602.02053