DOI QR코드

DOI QR Code

Enzymatic Synthesis of L-tert-Leucine with Branched Chain Aminotransferase

  • Received : 2011.05.25
  • Accepted : 2011.06.19
  • Published : 2011.10.28

Abstract

In this study, we demonstrated the asymmetric synthesis of L-tert-leucine from trimethylpyruvate using branched-chain aminotransferase (BCAT) from Escherichia coli in the presence of L-glutamate as an amino donor. Since BCAT was severely inhibited by 2-ketoglutarate, in order to overcome this here, we developed a BCAT/aspartate aminotransferase (AspAT) and BCAT/AspAT/pyruvate decarboxylase (PDC) coupling reaction. In the BCAT/AspAT/PDC coupling reaction, 89.2 mM L-tert-leucine (ee>99%) was asymmetrically synthesized from 100 mM trimethylpyruvate.

Keywords

References

  1. Allenmark, S. and B. Lamm. 2001. A useful route to (R)- and (S)-tert-leucine. Chirality 13: 43-47. https://doi.org/10.1002/1520-636X(2001)13:1<43::AID-CHIR9>3.0.CO;2-G
  2. Bea, H. S., H. J. Park, S. H. Lee, and H. Yun. 2011. Kinetic resolution of aromatic $\beta$-amino acids by $\omega$-transaminase. Chem. Commun. 47: 5894-5896. https://doi.org/10.1039/c1cc11528f
  3. Bommarius, A. S., M. Schwarm, and K. Drauz. 1998. Biocatalysis to amino acid-based chiral pharmaceuticals - examples and perspectives. J. Mol. Catal. B Enzym. 5: 1-11. https://doi.org/10.1016/S1381-1177(98)00009-5
  4. Hwang, B. Y., B. K. Cho, H. Yun, K. Koteshwar, and B. G. Kim. 2005. Revisit of aminotransferase in the genomic era and its application to biocatalysis. J. Mol. Catal. B Enzym. 37: 47-55. https://doi.org/10.1016/j.molcatb.2005.09.004
  5. Hong, E. Y., M. Cha, H. Yun, and B. G. Kim. 2010. Asymmetric synthesis of $_L$-tert-leucine and $_L$-3-hydroxyadamantylglycine using branched chain aminotransferase. J. Mol. Catal. B Enzym. 66: 228-233. https://doi.org/10.1016/j.molcatb.2010.05.014
  6. Li, T., A. B. Kootstra, and I. G. Fotheringham. 2002. Nonproteinogenic $\alpha$-amino acid preparation using equilibrium shifted transamination. Org. Proc. Res. Dev. 6: 533-538. https://doi.org/10.1021/op025518x
  7. Liu, S. L., Q. X. Song, D. Z. Wei, Y. W. Zhang, and X. D. Wang. 2006. Preparation of optically pure tert-leucine by penicillin G acylase-catalyzed resolution. Prep. Biochem. Biotech. 36: 235-241. https://doi.org/10.1080/10826060600716638
  8. Liu, S. L., D. Z. Wei, Q. X. Song, Y. W. Zhang, and X. D. Wang. 2006. Effect of organic cosolvent on kinetic resolution of tert-leucine by penicillin G acylase from Kluyvera citrophila. Bioproc. Biosyst. Eng. 28: 285-289. https://doi.org/10.1007/s00449-005-0027-y
  9. Ma, J. A. 2003. Recent developments in the catalytic asymmetric synthesis of $\alpha-$ and $\beta-$amino acids. Angew. Chem. Int. Edit. 42: 4290-4299. https://doi.org/10.1002/anie.200301600
  10. Schmidt, E., B. Bossow, R. Wichmann, and C. Wandrey. 1986. Enzyme membrane reactor - an alternative approach for continuous operation with enzymes. Kem. Ind. 35: 71-77.
  11. Seo, Y. M., Y. H. Khang, and H. Yun. 2011. Kinetic resolution of 3-fluoroalanine using a fusion protein of $_D-amino$ acid oxidase with vitreoscilla hemoglobin. Biosci. Biotechnol. Biochem. 75: 820-822. https://doi.org/10.1271/bbb.110122
  12. Steward, J. D. 2001. Dehydrogenases and transaminases in asymmetric synthesis. Curr. Opin. Chem. Biol. 5: 120-129. https://doi.org/10.1016/S1367-5931(00)00180-0
  13. Taylor, P. P., D. P. Pantaleone, R. F. Senkpeil, and I. G. Fotheringham. 1998. Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol. 16: 412-418. https://doi.org/10.1016/S0167-7799(98)01240-2
  14. Turner, N. J., J. R. Winterman, R. McCague, J. S. Parratt, and S. J. C. Taylor. 1995. Synthesis of homochiral $_L-$(S)-tert-leucine via a lipase catalysed dynamic resolution process. Tetrahedron Lett. 36: 1113-1136. https://doi.org/10.1016/0040-4039(94)02408-4
  15. Yun, H. and B. G. Kim. 2008. Enzymatic production of (R)- phenylacetylcarbinol by pyruvate decarboxylase from Zymomonas mobilis. Biotechnol. Bioprocess Eng. 13: 372-376. https://doi.org/10.1007/s12257-008-0030-7
  16. Zhu, D. and L. Hua. 2009. Biocatalytic asymmetric amination of carbonyl functional groups - a synthetic biology approach to organic chemistry. Biotechnol. J. 4: 1420-1431. https://doi.org/10.1002/biot.200900110

Cited by

  1. The specificity and kinetic mechanism of branched-chain amino acid aminotransferase fromEscherichia colistudied with a new improved coupled assay procedure and the enzyme's potential for biocatalysis vol.281, pp.1, 2014, https://doi.org/10.1111/febs.12609
  2. Directed evolution of leucine dehydrogenase for improved efficiency of l-tert-leucine synthesis vol.100, pp.13, 2011, https://doi.org/10.1007/s00253-016-7371-5
  3. Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates vol.6, pp.None, 2016, https://doi.org/10.1038/srep30462
  4. Establishing a Mathematical Equations and Improving the Production of l-tert-Leucine by Uniform Design and Regression Analysis vol.181, pp.4, 2011, https://doi.org/10.1007/s12010-016-2295-1
  5. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity vol.102, pp.2, 2018, https://doi.org/10.1007/s00253-017-8655-0
  6. Enzymatic asymmetric synthesis of chiral amino acids vol.47, pp.4, 2011, https://doi.org/10.1039/c7cs00253j
  7. Biochemical and structural characterization of a highly active branched-chain amino acid aminotransferase from Pseudomonas sp. for efficient biosynthesis of chiral amino acids vol.103, pp.19, 2011, https://doi.org/10.1007/s00253-019-10105-9
  8. Biosynthetic L-tert-leucine using Escherichia coli co-expressing a novel NADH-dependent leucine dehydrogenase and a formate dehydrogenase vol.47, pp.None, 2011, https://doi.org/10.1016/j.ejbt.2020.07.001
  9. Biocatalytic routes to anti-viral agents and their synthetic intermediates vol.50, pp.3, 2011, https://doi.org/10.1039/d0cs00763c
  10. Synthesis of γ-Hydroxy-α-amino Acid Derivatives by Enzymatic Tandem Aldol Addition-Transamination Reactions vol.11, pp.8, 2011, https://doi.org/10.1021/acscatal.1c00210
  11. Amino Acid and Peptide‐Based Antiviral Agents vol.16, pp.20, 2011, https://doi.org/10.1002/cmdc.202100397