DOI QR코드

DOI QR Code

Diversity and Polymorphism in AHL-Lactonase Gene (aiiA) of Bacillus

  • Huma, Nusrat (Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus) ;
  • Shankar, Pratap (Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus) ;
  • Kushwah, Jyoti (Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus) ;
  • Bhushan, Ashish (Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus) ;
  • Joshi, Jayadev (Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus) ;
  • Mukherjee, Tanmoy (Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus) ;
  • Raju, Sajan C. (Environmental Genomics Unit, National Environmental Engineering Research Institute (NEERI), CSIR) ;
  • Purohit, Hemant J. (Environmental Genomics Unit, National Environmental Engineering Research Institute (NEERI), CSIR) ;
  • Kalia, Vipin Chandra (Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus)
  • Received : 2011.05.30
  • Accepted : 2011.07.11
  • Published : 2011.10.28

Abstract

To explore bacterial diversity for elucidating genetic variability in acylhomoserine lactone (AHL) lactonase structure, we screened 800 bacterial strains. It revealed the presence of a quorum quenching (QQ) AHL-lactonase gene (aiiA) in 42 strains. These 42 strains were identified using rrs (16S rDNA) sequencing as Bacillus strains, predominantly B. cereus. An in silico restriction endonuclease (RE) digestion of 22 AHL lactonase gene (aiiA) sequences (from NCBI database) belonging to 9 different genera, along with 42 aiiA gene sequences from different Bacillus spp. (isolated here) with 14 type II REs, revealed distinct patterns of fragments (nucleotide length and order) with four REs; AluI, DpnII, RsaI, and Tru9I. Our study reflects on the biodiversity of aiiA among Bacillus species. Bacillus sp. strain MBG11 with polymorphism (115Alanine > Valine) may confer increased stability to AHL lactonase, and can be a potential candidate for heterologous expression and mass production. Microbes with ability to produce AHL-lactonases degrade quorum sensing signals such as AHL by opening of the lactone ring. The naturally occurring diversity of QQ molecules provides opportunities to use them for preventing bacterial infections, spoilage of food, and bioremediation.

Keywords

References

  1. Al-Ajlani, M. M., M. A. Sheikh, Z. Ahmad, and S. Hasnain. 2007. Bacillus subtilis strains produce a broad spectrum of bioactive peptides with great potential for biotechnological and biopharmaceutical applications. Microb. Cell Fact. 6: 17. https://doi.org/10.1186/1475-2859-6-17
  2. Arguelles-Arias, A., M. Ongena, B. Halimi, Y. Lara, A. Brans, B. Joris, et al. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8: 63. https://doi.org/10.1186/1475-2859-8-63
  3. Bai, F., Y. Han, J. Chen, and X.-H. Zhang. 2008. Disruption of quorum sensing in Vibrio harveyi by the AiiA protein of Bacillus thuringiensis. Aquaculture 274: 36-40. https://doi.org/10.1016/j.aquaculture.2007.11.024
  4. Bjarnsholt, T. and M. Givskov. 2008. Quorum sensing inhibitory drugs as next generation antimicrobials: Worth the effort? Curr. Infect. Dis. Rep. 10: 22-28. https://doi.org/10.1007/s11908-008-0006-y
  5. Borlee, B. R., G. D. Geske, C. J. Robinson, H. E. Blackwell, and J. Handelsman. 2008. Quorum-sensing signals in the microbial community of the cabbage white butterfly larval midgut. ISME J. 2: 1101-1111. https://doi.org/10.1038/ismej.2008.70
  6. Cai, X., R. Wang, A. Filloux, G. Waksman, and G. Meng. 2011. Structural and functional characterization of Pseudomonas aeruginosa CupB chaperones. PLoS ONE 6: e16583. https://doi.org/10.1371/journal.pone.0016583
  7. Capriotti, E., P. Fariselli, and R. Casadio. 2005. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 33: W306-W310. https://doi.org/10.1093/nar/gki375
  8. Chan, K.-G., C.-S. Wong, W.-F. Yin, C.-K. Sam, and C.-L. Koh. 2010. Rapid degradation of N-3-oxo-acylhomoserine lactones by a Bacillus cereus isolate from Malaysian rainforest soil. Antonie Van Leeuwenhoek 98: 299-305. https://doi.org/10.1007/s10482-010-9438-0
  9. Chen, R., Z. Zhou, Y. Cao, and B. Yao. 2010. High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microb. Cell Fact. 9: 39. https://doi.org/10.1186/1475-2859-9-39
  10. Chu, W., F. Lu, W. Zhu, and C. Kang. 2010. Isolation and characterization of new potential probiotic bacteria based on quorum-sensing system. J. Appl. Microbiol. 110: 202-208.
  11. Courvalin, P. 2008. Predictable and unpredictable evolution of antibiotic resistance. J. Intern. Med. 264: 4-16. https://doi.org/10.1111/j.1365-2796.2008.01940.x
  12. Dong, Y.-H. and L.-H. Zhang, 2005. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 43: 101-109.
  13. Dong, Y.-H., J.-L. Xu, X.-Z. Li, and L.-H. Zhang. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 3526-3531. https://doi.org/10.1073/pnas.97.7.3526
  14. Dong, Y.-H., L.-H. Wang, and L.-H. Zhang. 2007. Quorum-quenching microbial infections: Mechanisms and implications. Phil. Trans. R. Soc. B 362: 1201-1211. https://doi.org/10.1098/rstb.2007.2045
  15. Draganov, D. I., J. F. Teiber, A. Speelman, Y. Osawa, R. Sunahara, and B. N. La Du. 2005. Human paraoxonases (PON1, PON2 and PON3) are lactonases with overlapping and distinct substrate specificities. J. Lipid Res. 46: 1239-1247. https://doi.org/10.1194/jlr.M400511-JLR200
  16. Fernandez, J. H., M. A. F. Hayashi, A. C. M. Camargo, and G. Neshich. 2003. Structural basis of the lisinopril-binding specificity in N- and C-domains of human somatic ACE. Biochem. Biophys. Res. Commun. 308: 219-226. https://doi.org/10.1016/S0006-291X(03)01363-9
  17. Garcia-Aljaro, C., L. Eberl, K. Riedel, and A. R. Blanch. 2008. Detection of quorum-sensing related molecules in Vibrio scophthalmi. BMC Microbiol. 8: 138. https://doi.org/10.1186/1471-2180-8-138
  18. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98.
  19. Hoa, N. T., L. Baccigalupi, A. Huxham, A. Smertenko, P. H. Van, S. Ammendo, et al. 2000. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 66: 5241-5247. https://doi.org/10.1128/AEM.66.12.5241-5247.2000
  20. Huber, T., G. Faulkner, and P. Hugenholtz. 2004. Bellerophon; A program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319. https://doi.org/10.1093/bioinformatics/bth226
  21. Johnson, L. A. 2011. Antibiotic research and revenue declining. Drug Discovery & Development, May 06, 2011. Available at http://www.dddmag.com/news-Antibiotic-Research-and-Revenue- Declining-050611.aspx (accessed on 25th May 2k11)
  22. Kalia, V. C. and H. J. Purohit. 2008. Microbial diversity and genomics in aid of bioenergy. J. Ind. Microbiol. Biotechnol. 35: 403-419. https://doi.org/10.1007/s10295-007-0300-y
  23. Kalia, V. C. and H. J. Purohit. 2011. Quenching the quorum sensing system: Potential antibacterial drug targets. Crit. Rev. Microbiol. 37: 121-140. https://doi.org/10.3109/1040841X.2010.532479
  24. Kalia, V. C., T. Mukherjee, A. Bhushan, J. Joshi, P. Shankar, and N. Huma. 2011. Analysis of the unexplored features of rrs (16S rDNA) of the genus Clostridium. BMC Genomics 12: 18. https://doi.org/10.1186/1471-2164-12-18
  25. Kalia, V. C., S. C. Raju, and H. J. Purohit. 2011. Genomic analysis reveals versatile organisms for quorum quenching enzymes: Acyl-homoserine lactone-acylase and -lactonase. Open Microbiol. J. 5: 1-13. https://doi.org/10.2174/1874456701105010001
  26. Koch, C. and N. Hoiby. 2000. Diagnosis and treatment of cystic fibrosis. Respiration 67: 239-247. https://doi.org/10.1159/000029503
  27. Kumar, T., M. Singh, H. J. Purohit, and V. C. Kalia. 2009. Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J. Appl. Microbiol. 106: 2017-2023. https://doi.org/10.1111/j.1365-2672.2009.04160.x
  28. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  29. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton. 1993. PROCHECK - a program to check the stereochemical quality of protein structures. J. App. Cryst. 26: 283-291. https://doi.org/10.1107/S0021889892009944
  30. Lee, S. J., S. Y. Park, J. J. Lee, D. Y. Yum, B. T. Koo, and J. K. Lee. 2002. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68: 3919-3924. https://doi.org/10.1128/AEM.68.8.3919-3924.2002
  31. Lin, Y. H., J. L. Xu, J. Hu, L. H. Wang, S. L. Ong, J. R. Leadbetter, et al. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47: 849-860. https://doi.org/10.1046/j.1365-2958.2003.03351.x
  32. Liu, D., B. W. Lepore, G. A. Petsko, P. W. Thomas, E. M. Stone, W. Fast, et al. 2005. Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 102: 11882-11887. https://doi.org/10.1073/pnas.0505255102
  33. Luthy, R., J. U. Bowie, and D. Eisenberg. 1992. Assessment of protein models with three-dimensional profiles. Nature 356: 83-85. https://doi.org/10.1038/356083a0
  34. Molina, L., F. Constantinescu, L. Michel, C. Reimann, B. Duffy, and G. Defago. 2003. Degradation of pathogen quorum-sensing molecule by soil bacteria: A preventive and curative biological control mechanism. FEMS Microbiol. Ecol. 45: 73-81.
  35. Neshich, G., W. Rocchia, A. L. Mancini, M. E. B. Yamagishi, P. R. Kuser, R. Fileto, et al. 2004. Java Protein Dossier: A novel Web-based data visualization tool for comprehensive analysis of protein structure. Nucleic. Acids Res. 32: W595-W601. https://doi.org/10.1093/nar/gkh480
  36. Nhan, D. T., D. T. V. Cam, M. Wille, T. Defoirdt, P. Bossier, and P. Sorgeloos. 2010. Quorum quenching bacteria protect Macrobrachium rosenbergii larvae from Vibrio harveyi infection. J. Appl. Microbiol. 109: 1007-1016. https://doi.org/10.1111/j.1365-2672.2010.04728.x
  37. Park, S. Y., H. O. Kang, H. S. Jang, J. K. Lee, B. T. Koo, and D. Y. Yum. 2005. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl. Environ. Microbiol. 71: 2632-2641. https://doi.org/10.1128/AEM.71.5.2632-2641.2005
  38. Park, S. Y., S. J. Lee, T. K. Oh, J. W. Oh, B. T. Koo, D. Y. Yum, and J. K. Lee. 2003. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149: 1541-1550. https://doi.org/10.1099/mic.0.26269-0
  39. Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, et al. 2004. UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25: 1605-1612. https://doi.org/10.1002/jcc.20084
  40. Porwal, S., S. Lal, S. Cheema, and V. C. Kalia. 2009. Phylogeny in aid of the present and novel microbial lineages: Diversity in Bacillus. PLoS ONE 4: e4438. https://doi.org/10.1371/journal.pone.0004438
  41. Porwal, S., T. Kumar, S. Lal, A. Rani, S. Kumar, S. Cheema, et al. 2008. Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour. Technol. 99: 5444-5451. https://doi.org/10.1016/j.biortech.2007.11.011
  42. Reimmann, C., N. Ginet, L. Michel, C. Keel, P. Michaux, V. Krishnapillai, et al. 2002. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148: 923-932.
  43. Riaz, K., C. Elmerich, D. Moreira, A. Raffoux, Y. Dessaux, and D. Faure. 2008. A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. Environ. Microbiol. 10: 560-570. https://doi.org/10.1111/j.1462-2920.2007.01475.x
  44. Sali, A. and T. L. Blundell. 1993. Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779-815. https://doi.org/10.1006/jmbi.1993.1626
  45. Singh, M., S. K. S. Patel, and V. C. Kalia. 2009. Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb. Cell Fact. 8: 38. https://doi.org/10.1186/1475-2859-8-38
  46. Ueda, A. and T. K. Wood. 2009. Connecting quorum sensing, c-di-GMP, Pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog. 5: e1000483. https://doi.org/10.1371/journal.ppat.1000483
  47. Ulrich, R. L. 2004. Quorum quenching: Enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl. Environ. Microbiol. 70: 6173-6180. https://doi.org/10.1128/AEM.70.10.6173-6180.2004
  48. Verma, V., S. C. Raju, A. Kapley, V. C. Kalia, H. F. Daginawala, and H. J. Purohit. 2010. Evaluation of genetic and functional diversity of Stenotrophomonas isolates from diverse effluent treatment plants. Bioresour. Technol. 101: 7744-7753. https://doi.org/10.1016/j.biortech.2010.05.014
  49. von Bodman, S. B., J. M. Willey, and S. P. Diggle. 2008. Cell-cell communication in bacteria: United we stand. J. Biotechnol. 190: 4377-4391.
  50. Zhang, L.-H. and Y.-H. Dong. 2004. Quorum sensing and signal interference: Diverse implications. Mol. Microbiol. 53: 1563-1571. https://doi.org/10.1111/j.1365-2958.2004.04234.x

Cited by

  1. Integrated Perspective for Effective Bioremediation vol.166, pp.4, 2011, https://doi.org/10.1007/s12010-011-9479-5
  2. Inhibition of Quorum Sensing Mediated Virulence Factors Production in Urinary Pathogen Serratia marcescens PS1 by Marine Sponges vol.52, pp.2, 2011, https://doi.org/10.1007/s12088-012-0272-0
  3. Quorum Quenching Revisited—From Signal Decays to Signalling Confusion vol.12, pp.12, 2011, https://doi.org/10.3390/s120404661
  4. Cross-Species Induction and Enhancement of Antimicrobial Properties in Response to Gamma Irradiation in Exiguobacterium sp. HKG 126 vol.53, pp.2, 2011, https://doi.org/10.1007/s12088-013-0369-0
  5. Antibiotic Resistance Profiles and Quorum Sensing-Dependent Virulence Factors in Clinical Isolates of Pseudomonas Aeruginosa vol.53, pp.2, 2011, https://doi.org/10.1007/s12088-013-0370-7
  6. Conceivable Bioremediation Techniques Based on Quorum Sensing vol.295, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/amm.295-298.39
  7. Antibiofilm Activity of Biosurfactant Producing Coral Associated Bacteria Isolated from Gulf of Mannar vol.54, pp.4, 2011, https://doi.org/10.1007/s12088-014-0474-8
  8. Quorum Quenching Mediated Approaches for Control of Membrane Biofouling vol.10, pp.5, 2011, https://doi.org/10.7150/ijbs.9028
  9. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1 vol.169, pp.7, 2011, https://doi.org/10.1016/j.micres.2013.10.005
  10. Genome Wide Search for Biomarkers to Diagnose Yersinia Infections vol.55, pp.4, 2011, https://doi.org/10.1007/s12088-015-0552-6
  11. Attenuation of quorum sensing-mediated virulence in Gram-negative pathogenic bacteria: implications for the post-antibiotic era vol.6, pp.2, 2011, https://doi.org/10.1039/c4md00363b
  12. Inhibition of Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa by Culture Extract from Novel Bacterial Species of Paenibacillus Using a Rat Model of Chro vol.2015, pp.None, 2011, https://doi.org/10.1155/2015/671562
  13. Identification and analysis of the salt tolerant property of AHL lactonase (AiiATSAWB) of Bacillus species vol.55, pp.5, 2015, https://doi.org/10.1002/jobm.201400013
  14. Meddling Vibrio cholerae Murmurs: A Neoteric Advancement in Cholera Research vol.55, pp.2, 2015, https://doi.org/10.1007/s12088-015-0520-1
  15. Exploration of Modulated Genetic Circuits Governing Virulence Determinants in Staphylococcus aureus vol.56, pp.1, 2011, https://doi.org/10.1007/s12088-015-0555-3
  16. Potential Emergence of Multi-quorum Sensing Inhibitor Resistant (MQSIR) Bacteria vol.56, pp.1, 2016, https://doi.org/10.1007/s12088-015-0558-0
  17. Identification of N‐acyl homoserine lactone‐degrading bacteria isolated from rainbow trout (Oncorhynchus mykiss) vol.125, pp.2, 2011, https://doi.org/10.1111/jam.13891
  18. Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/2015978
  19. Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms vol.59, pp.1, 2011, https://doi.org/10.1007/s12088-018-0757-6
  20. Inhibition of Staphylococcus aureus and Pseudomonas aeruginosa Biofilm and Virulence by Active Fraction of Syzygium cumini (L.) Skeels Leaf Extract: In-Vitro and In Silico Studies vol.59, pp.1, 2019, https://doi.org/10.1007/s12088-018-0770-9
  21. Aligning Microbial Biodiversity for Valorization of Biowastes: Conception to Perception vol.59, pp.4, 2011, https://doi.org/10.1007/s12088-019-00826-w
  22. Quorum Quenching Enzyme APTM01, an Acylhomoserine-Lactone Acylase from Marine Bacterium of Pseudoalteromonas tetraodonis Strain MQS005 vol.76, pp.12, 2011, https://doi.org/10.1007/s00284-019-01739-z
  23. Quorum Quenching: A Potential Target for Antipseudomonal Therapy vol.13, pp.None, 2011, https://doi.org/10.2147/idr.s263196
  24. Phomopsis tersa as Inhibitor of Quorum Sensing System and Biofilm Forming Ability of Pseudomonas aeruginosa vol.60, pp.1, 2011, https://doi.org/10.1007/s12088-019-00840-y
  25. Mapping Microbial Capacities for Bioremediation: Genes to Genomics vol.60, pp.1, 2020, https://doi.org/10.1007/s12088-019-00842-w
  26. Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana vol.30, pp.4, 2011, https://doi.org/10.4014/jmb.1907.07030
  27. Modelling and analysing biological oscillations in quorum sensing networks vol.14, pp.4, 2011, https://doi.org/10.1049/iet-syb.2019.0079
  28. Tocopherol and phytol possess anti-quorum sensing mediated anti-infective behavior against Vibrio campbellii in aquaculture: An in vitro and in vivo study vol.161, pp.no.pa, 2011, https://doi.org/10.1016/j.micpath.2021.105221