Site-Specific Recombination by the Integrase MJ1 on Mammalian Cell

동물 세포 내에서 MJ1 인티그라제에 의한 부위 특이적 재조합

  • Kim, Hye-Young (College of Life Sciences and Biotechnology, Korea University) ;
  • Yoon, Bo-Hyun (College of Life Sciences and Biotechnology, Korea University) ;
  • Chang, Hyo-Ihl (College of Life Sciences and Biotechnology, Korea University)
  • 김혜영 (고려대학교 생명공학과) ;
  • 윤보현 (고려대학교 생명공학과) ;
  • 장효일 (고려대학교 생명공학과)
  • Received : 2011.10.26
  • Accepted : 2011.12.08
  • Published : 2011.12.28

Abstract

Integrase MJ1 from the bacteriophage ${\Phi}FC1$ carries out recombination between two DNA sequences (the phage attachment site, attP and the bacterial attachment site, attB) in NIH3T3 mouse cells. In this study, the integration vector containing attP, attB and the integrase gene MJ, was constructed. The integration mediated by integrase MJ1 in Escherichia coli led to excision of LacZ. Therefore, the frequency of integration was measured by the counting of the white colony, which is detectable on X-Gal plates. The extrachromosomal integration in NIH3T3 mouse cells was monitored by the expression of the green fluorescent protein (GFP) as a reporter. To demonstrate integration mediated integrase MJ1 in NIH3T3 cells, vectors containing attP and attB were co-transfected into NIH3T3 cells. The integration was confirmed by fluorescent microscopy. The expression of GFP was induced in NIH3T3 cells expressing MJ1 without accessory factors. By contrast, the excision mediated by the MJ1 between attR and attL had no effect on the expression of GFP. These results suggest that integrase MJ1 may enable a variety of genomic modifications for research and therapeutic purposes in higher living cells.

이전 연구에서, bacteriophage ${\Phi}FC1$이 Enterococcus faecalis KBL703에서 UV induction을 통해 분리 동정되었으며, ${\Phi}FC1$은 phage attachment site인 attP와 bacterial attachment site인 attB 사이에서 site-specific integration을 촉매하는 integrase를 가지고 있다는 것을 밝혀냈으며 이를 MJ1이라 명명하였다. 이 연구에서는 이를 바탕으로 MJ1에 의한 site-specific integration의 효율을 Escherichia coli와 NIH3T3 cell에서 확인 하기 위해 attP, attB, MJ1을 각각의 벡터에 삽입하였다. MJ1 인테그라제에 의한 재조합을 수행하기 위해서 기질 벡터 pABLP를 $DH5{\alpha}$에 형질전환시킨 후, LB 배지에서 $37^{\circ}C$ 1시간 배양한 후 암피실린(ampicillin)과 테트라싸이클린(tetracycline) 항생제 플레이트로 pGMJ1과 pABLP 같이 가지고 있는 colony 들을 선별하여, LacZ 유전자가 불활성화 된 흰색 콜로니 개수를 세고 통계를 낸 결과 integration의 frequency가 99% 이상인 것으로 나타났다. 또한, 실제로 재조합이 일어났는 지를 확인하기 위해서 콜로니 PCR을 수행하여 재조합의 산물인 attL 150 bp을 확인하였다. PCR 산물은 염기서열분석을 통해 정확한 site-specific integration이 일어났음을 확인하였다. MJ1에 의한 integration을 보이기 위해 attP와 attB를 가지고 있는 vector를 MJ1 expression vector와 함께 NIH3T3 cell에 cotransfection 했으며 GFP를 reporter로 사용해 그 activity를 관찰하였다. NIH3T3 cell에서 GFP의 발현을 형광 현미경을 통해 알아본 결과, MJ1에 의한 sitespecific integration이 다른 accessory protein의 도움 없이 일어난다는 것을 볼 수 있었다. 마찬가지 방법으로, attR과 attL 간의 excision을 GFP로 알아본 결과, GFP는 발현하지 않았으며, 이는 MJ1에 의한 excision이 일어나지 않았음을 보여주었다. 이와 같은 결과로 볼 때, MJ1의 host만이 아니라 넓은 범위안에서도 integration을 수행할 수 있다는 것을 보여주었다. 따라서 MJ1을 이용한 site-specific integration system의 개발은 gene therapy를 위한 gene delivery system의 구축에 있어서 좋은 시작이 될 수 있다.

Keywords

References

  1. Broach, J. R., V. R. Guarascio, and M. Jayaram. 1982. Recombination within the yeast plasmid $2\mu$ circle is site-specific. Cell 29: 227-234. https://doi.org/10.1016/0092-8674(82)90107-6
  2. Campbell, A. M. 1992. Chromosomal insertion sites for phages and plasmids. J. Bacteriol. 174: 7495-7499.
  3. Chang, A. C. Y. and S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134: 1141-1156.
  4. Colloms, S. D., P. Sykora, G. Szatmari, and D. J. Sherratt. 1990. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the $\lambda$ integrase family of site-specific recombinases. J. Bacteriol. 172: 6973-6980.
  5. Cormack, B. P., R. H. Valdivia, and S. Falkow. 1996. FACSoptimized mutants of the green fluorescent protein (GFP). Gene 173: 33-38. https://doi.org/10.1016/0378-1119(95)00685-0
  6. Ginsburg, D. S. and Michele P. Calos. 2005. Site-Specific integration with $\Phi$C31 integrase for prolonged expression of therapeutic genes. Adv. Genet. 54: 179-187.
  7. Dorgai, L., S. Sloan, and R. A. Weisberg. 1998. Recognition of core binding sites by bacteriophage integrases. J. Mol. Biol. 277: 1059-1070. https://doi.org/10.1006/jmbi.1998.1642
  8. Groth, A. C., E. C. Olivares, B. Thyagarajan, and M. P.Calos. 2000. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA. 97: 5995-6000. https://doi.org/10.1073/pnas.090527097
  9. Hwang, E. S. and J. J. Scocca. 1990 Interaction of integration host factor from E. coli with the integration region of the Haemophilus influenza bacteriophage HP1. J. Bacteriol. 172: 4852-4860. https://doi.org/10.1128/jb.172.9.4852-4860.1990
  10. Kaelin, W. G., W. Krek, W. R. Sellers, J. A. Decaprio, F. Ajchenbaum, C. S. Fuchs, T. Chittenden, Y. Li, P. J. Farnham, M. A. Blanar, D. M. Livingston, and E. K. Flemington. 1992. Expression cloning of a cDNA encoding a retinoblastoma- binding protein with E2F-like properties. Cell 70: 351-364. https://doi.org/10.1016/0092-8674(92)90108-O
  11. Kim, M. J., J. Y. Lee, Y. W. Kim, and H. I. Chang. 1995. Sequencing and expression of a putative site-specific recombinase gene (MJ1) of and Enterococcal bacteriophage $\Phi$FC1. M.S. Thesis. Korea University, Seoul, Korea.
  12. Kim, M. J., J. Y. Lee, H. J. Sung, and H. I. Chang. 1996. Molecular characterization of the region encoding integrative functions from Enterococcal Bacteriophage $\Phi$FC1. J. Biochem. Mol. Biol. 29: 448-454.
  13. Kim, Y. W. and H. I. Chang. 1994. Isolation and molecular characterization of $\Phi$FC1 a new temperate phage from Enterococcus faecalis. Mol. Cell., 4: 155-158.
  14. Kolot, M., N. Silberstein, and E. Yagil. 1999. Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol. Biol. Rep. 26: 207- 213. https://doi.org/10.1023/A:1007096701720
  15. Kuhstoss, S. and R. N. Rao. Analysis of the integration function of the Sterotomycese bacteriophage $\Phi$C31. 1991. J. Mol. Biol. 222: 897-908. https://doi.org/10.1016/0022-2836(91)90584-S
  16. O'Gorman, S., D. T. Fox, and G. M. Wahl. 1991. Recombinase- mediated gene activation and site-specific integration in mammalian cells. Science 251: 1351-1355. https://doi.org/10.1126/science.1900642
  17. Olivares, E. C., R. P. Hollis, and M. P. Calos. 2001. Phage R4 integrase mediates site-specific integration in human cells. Gene 278: 167-176. https://doi.org/10.1016/S0378-1119(01)00711-9
  18. Sauer, B. and N. Henderson. 1988. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA 85: 5166-5170. https://doi.org/10.1073/pnas.85.14.5166
  19. Sauer, B. and N. Henderson. 1990. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2: 441-449.
  20. Shirai, M., H. Nara, A. Sato, T. Aida, and H. Takahashi. 1991. Site-specific integration of the actinophage R4 genome into the chromosome of Streptomyces parvulus upon lysogenization. J. Bacteriol. 173: 4237-4239.
  21. Smith, M. C. and Thorpe, H. M. 2002. Diversity in the serine recombinases. J. Mol. Microbiol. 44: 299-307. https://doi.org/10.1046/j.1365-2958.2002.02891.x
  22. Stoll, S. M., D. S. Ginsburg, and M. P. Calos. 2002. Phage TP901-1 site-specific integrase functions in human cells. J. Bacteriol. 184: 3657-3663. https://doi.org/10.1128/JB.184.13.3657-3663.2002
  23. Thorpe, H. M., S. E. Wilson, and M. C. Smith. 2000. Control of directionality in the site-specific recombination system of the Streptomyces phage $\Phi$C31. Mol. Microbiol. 38: 232-241. https://doi.org/10.1046/j.1365-2958.2000.02142.x
  24. Thyagarajan, B., E. C. Olivares, R. P. Hollis, D. S. Ginsburg, and M. P. Calos. 2001. Site-specific genome integration in mammalian cells mediated by phage $\Phi$C31 integrase. Mol. Cell. Biol. 21: 3926-3934. https://doi.org/10.1128/MCB.21.12.3926-3934.2001
  25. Vieira, J. and J. Messing. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259- 268. https://doi.org/10.1016/0378-1119(82)90015-4
  26. Woodcock, D. M., P. J. Crowther, J. Doherty, S. Jefferson, E. Decruz, M. Noyer-Weidner, S. S. Smith, M. Z. Michael, and M. W. Graham. 1989. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation and phage recombinants. Nucleic. Acids. Res. 17: 3469-3478. https://doi.org/10.1093/nar/17.9.3469
  27. Yang, H. Y., Y. W. Kim, and H. I. Chang. 2002. Construction of an integration-proficient vector based on the sitespcific recombination mechanism Enterococcal temperate phage $\Phi$FC1. J. Bacteriol. 184: 1859-1864. https://doi.org/10.1128/JB.184.7.1859-1864.2002