Plant Growth Promotion Activity of Endophytic Fungi Isolated from the Roots of Calystegia soldanella

갯메꽃 뿌리로부터 분리된 내생진균의 식물생장촉진활성

  • You, Young-Hyun (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Yoon, Hyeok-Jun (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Woo, Ju-Ri (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Seo, Yeong-Gyo (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Shin, Jae-Ho (School of Applied Biosciences, Kyungpook National University) ;
  • Choo, Yeon-Sik (Department of Biology, College of National Sciences, Kyungpook National University) ;
  • Lee, In-Jung (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Jong-Guk (Department of Life Sciences and Biotechnology, Kyungpook National University)
  • Received : 2011.09.19
  • Accepted : 2011.11.09
  • Published : 2011.12.28

Abstract

Eight endophytic fungal strains were isolated from the roots of Calystegia soldanella from the western coast of South Korea. The culture filtrate of the eight endophytic fungi were applied to waito-c rice seedlings in order to verify potential plant growth promotion activities. The results of bioassay indicated that the Cs-9-7 fungal strain possessed the highest plant growth promotion activity. Fungal culture filtrates were analyzed to verify secondary metabolites using gas chromatography and mass spectroscopy with selected ion monitoring (GC/MS-SIM). The culture filtrate of the Cs-9-7 fungal strain was confirmed to contain gibberellins GA3 (1.229 ng/mL), GA4 (3.535 ng/mL), GA7 (1.408 ng/mL) and GA12 (0.378 ng/mL). Polymerase chain reactions (PCR) were performed so as to determine the internal transcribed spacer (ITS) regions for the identification of isolated strains with universal primers ITS-1 and ITS-4. The Cs-9-7 fungal strain, isolated from the root of C. soldanella, has been named Aspergillus tubingensis Cs-9-7.

서해안에 자생하는 갯메꽃의 뿌리로부터 8종의 내생진균을 분리하였다. 그리고 식물생장촉진검정을 확인하기 위하여 분리된 내생진균의 배양여액을 난장이벼에 처리하였다. Cs-9-7 균주의 배양여액 처리구에서 난장이벼의 생장촉진활성이 가장 높았다. 그리고 Cs-9-7 균주의 배양여액은 GC/MS-SIM을 사용하여 이차대사산물을 분석하였을 때, $GA_3$(1.229 ng/mL), $GA_4$(3.535 ng/mL), $GA_7$(1.408 ng/mL) 그리고 $GA_{12}$(0.378 ng/mL)의 지베렐린이 확인되었다. 그리고 분리된 내생진균의 동정을 위하여, 유니버샬 프라이머 ITS1과 ITS4를 사용하여 ITS 영역의 염기서열을 결정하였다. Cs-9-7 균주의 동정결과 A. tubingensis와 99%의 유사성이 확인되었으며, A. tubingensis Cs-9-7라고 명명하였다.

Keywords

References

  1. Basiacik, K. S. and N. Aksoz. 2004. Optimization of carbon nitrogen ratio for production of gibberellic acid by Pseudomonas sp. Pol. J. Microbiol. 53: 20-117.
  2. Bottini, R., F. Cassan and P. Piccoli. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65: 497-503.
  3. Carter, R. W. G. 1991. Near future sea level impacts on coastal dunes landscapes. Landscape Ecol. 6: 29-39. https://doi.org/10.1007/BF00157742
  4. Choi, W. Y., K. S. Sin, I. J. Lee, I. K. Rhee, J. H. Lee, and J. G. Kim. 2004. Isolation of gibberellin-producing Penicillium spp. from the root of Lindera obtusiloba and Vaccinium koreanum. Korean. J. Mycol. 32: 16-22. https://doi.org/10.4489/KJM.2004.32.1.016
  5. Garia-Mora, M. R., J. B. Gallego-Fernandez, and F. Garcia- Novo. 2000. Plant diversity as a suitable tool for coastal dune vulnerability assessment. J. Coastal Res. 16: 990-995.
  6. Hasan, H. A. 2002. Gibberellin and auxin-production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiol. Immunol. Hung. 49: 105-18 https://doi.org/10.1556/AMicr.49.2002.1.11
  7. Hamayun, M., Khan, S. A., Khan, M. A., Khan, A. L., Kang, S. M., Kim, S. K., Joo, G. J., and Lee, I. J. 2009. Gibberellin production by pure cultures of a new strain of Aspergillus fumigates. World J Microbiol. Biotechnol., 25: 1785-1792. https://doi.org/10.1007/s11274-009-0078-3
  8. Hedden, P. and A. l. Phillips. 2000. Gibberellin metabolism: new insights revealed by the genes. Trands in Plant Sci. 5: 523-530. https://doi.org/10.1016/S1360-1385(00)01790-8
  9. Hwang, J. S., Y. H. You, J. J. Bae, S. A. Khan, J. G. Kim, and Y. S. Choo. 2011. Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi. J. Coastal Res. 27: 544-548. https://doi.org/10.2112/JCOASTRES-D-10-00090.1
  10. Kawaide, H. and T. Sassa. 1993. Accumulation of gibberellin A1 and the metabolism of gibberellin A9 to gibberellin A1 in a Phaeosphaeria sp. L 487 culture. Biosci. Biotech. Biochem. 57: 1403-1405. https://doi.org/10.1271/bbb.57.1403
  11. Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, I. J. Lee, and J. G. Kim. 2009. Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J. Microbiol. Biotechnol. 25: 829-833. https://doi.org/10.1007/s11274-009-9981-x
  12. Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, J. C. Seo, Y. S. Choo, I. J. Lee, S. D. Kim, I. K. Rhee, and J. G. Kim. 2009. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol. Lett. 31: 283-287. https://doi.org/10.1007/s10529-008-9862-7
  13. Khan, S. A., M. Hamayun, H. J. Yoon. H. Y. Kim. S. J. Suh, S. K. Hwang, J. M. Kim, I. J. Lee, Y. S. Choo, U. H. Yoon, W. S. Kong, B. M. Lee, and J. G. Kim. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231. https://doi.org/10.1186/1471-2180-8-231
  14. Kawanabe, Y., H. Yamane, T. Murayama, N. Takahashi, and T. Nakamura. 1983. Identification of gibberellin A3 in mycelia Neurospora Crassa. Agric. Biol. Chem. 47: 1693- 1694. https://doi.org/10.1271/bbb1961.47.1693
  15. Kim, B. S., H. M. Oh, H. Kang, S. Park, and J. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. Microb. Biotechnol. 14: 205-211.
  16. Lee, I. J., Foster, K., and Morgan, P. W. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant physiol. 116: 1003-1011. https://doi.org/10.1104/pp.116.3.1003
  17. Opelt, K. and G. Berg. 2004. Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient poor habitats of baltic sea coast. Appl. Microbiol. 70: 6569-6579. https://doi.org/10.1128/AEM.70.11.6569-6579.2004
  18. Rachev, R., V. Gancheva, S. Bojkova, C. Christov, and T. Zafirova. 1997. Gibberellin biosynthesis by Fusarium moniliforme in the presence of hydrophobic resin Amberlite XAD-2. Bulg. J. Plant Physi. 12: 24-31.
  19. Rim, S. O., J. H. Lee, W. Y. Choi, S. K. Hwang, S. J. Suh, I. J. Lee, I. K. Rhee, and J. G. Kim. 2005. Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J. Microbiol. Biotechnol. 15: 809-814.
  20. Vazquez, M. M., S. Cesar, R. Azcon, JM. Barea. 2000. Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15: 261-272 https://doi.org/10.1016/S0929-1393(00)00075-5
  21. Williams, A. T. 1998. Integrated management methods monitoring environmental changes in coastal dune ecosystem. pp. 642-653, In K. G. Baether., H. Barth, M. Bohle- Carbonell, C. Fragakis, E. Lipiatou, P. Martin, G. Ollier, and M. Weydart (eds.), Porc. 3rd European Marine Science and Technology Conference, Brusells, European Commission 2.
  22. Yamada, A., O. Takeo, D. Yosuke, O. Masatake. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience. 42: 43- 50. https://doi.org/10.1007/BF02463974