고전압 GaN 쇼트키 장벽 다이오드의 완충층 누설전류 분석

Analysis for Buffer Leakage Current of High-Voltage GaN Schottky Barrier Diode

  • 황대원 (고려대학교 전기전자전파공학부) ;
  • 하민우 (전자부품연구원 화합물소자연구센터) ;
  • 노정현 (전자부품연구원 화합물소자연구센터) ;
  • 박정호 (고려대학교 전기전자전파공학부) ;
  • 한철구 (전자부품연구원 화합물소자연구센터)
  • Hwang, Dae-Won (School of Electrical Engineering, Korea University) ;
  • Ha, Min-Woo (Compound Semiconductor Devices Research Center, Korea Electronics Technology Institute) ;
  • Roh, Cheong-Hyun (Compound Semiconductor Devices Research Center, Korea Electronics Technology Institute) ;
  • Park, Jung-Ho (School of Electrical Engineering, Korea University) ;
  • Hahn, Cheol-Koo (Compound Semiconductor Devices Research Center, Korea Electronics Technology Institute)
  • 투고 : 2010.09.06
  • 발행 : 2011.02.25

초록

본 논문에서 실리콘 기판 위에 성장된 GaN 에피탁시를 활용하여 고전압 쇼트키 장벽 다이오드를 제작하였으며, 금속-반도체 접합의 열처리 조건에 따른 GaN 완충층 (buffer layer) 누설전류와 제작된 다이오드의 전기적 특성 변화를 연구하였다. Ti/Al/Mo/Au 오믹 접합과 Ni/Au 쇼트키 접합이 제작된 소자에 설계 및 제작되었다. 메사를 관통하는 GaN 완충층의 누설전류를 측정하기 위하여 테스트 구조가 제안되었으며 제작하였다. $700^{\circ}C$에서 열처리한 경우 100 V 전압에서 측정된 완충층의 누설전류는 87 nA이며, 이는 $800^{\circ}C$에서 열처리한 경우의 완충층의 누설전류인 780 nA보다 적었다. GaN 쇼트키 장벽 다이오드의 누설전류 메커니즘을 분석하기 위해서 Auger 전자 분광학 (Auger electron spectroscopy) 측정을 통해 GaN 내부로 확산되는 Au, Ti, Mo, O 성분들이 완충층 누설전류 증가에 기여함을 확인했다. 금속-반도체 접합의 열처리를 통해 GaN 쇼트키장벽 다이오드의 누설전류를 성공적으로 감소시켰으며 높은 항복전압을 구현하였다.

We have fabricated GaN Schottky barrier diode (SBD) for high-voltage applications on Si substrate. The leakage current and the electrical characteristics of GaN SBD are investigated by annealing metal-semiconductor junctions. Ohmic junctions of Ti/Al/Mo/Au and Schottky junctions of Ni/Au are used in the fabrication. A test structure is proposed to measured buffer leakage current through a mesa structure. When annealing temperature is increased from $700^{\circ}C$ to $800^{\circ}C$, measured buffer leakage current is also increased from 87 nA to 780 nA at the width of 100 ${\mu}m$. The diffusion of Au, Ti, Mo, O into GaN buffer layer increases the leakage current and that is verified by Auger electron spectroscopy. Experimental results show that the low leakage current and the high breakdown voltage of GaN SBD are achieved by annealing metal-semiconductor junctions.

키워드

참고문헌

  1. E. R. Brown, "Megawatt solid-state electronics," Solid-State Electronics, vol. 42, no. 12, pp. 2119-2130, Dec. 1998. https://doi.org/10.1016/S0038-1101(98)00245-7
  2. 김재무, 김수진, 김동호, 정강민, 최홍구, 한철구, 김태근, "사다리꼴 게이트 구조를 갖는 고내압 AlGaN/GaN HEMT", 전자공학회 논문지, 제46권 SD편, 제4호, 328-332쪽, 2009년 4월.
  3. S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, "GaN: Processing, defects, and devices," J. Appl. Phys., vol. 86, no. 1, pp. 1-78, 1999. https://doi.org/10.1063/1.371145
  4. M. S. Shur, R. Gaska and A. Bykhovski, "GaN-based electronic devices," Solid-State Electronics, vol. 43, pp. 1451-1458, Aug. 1999. https://doi.org/10.1016/S0038-1101(99)00088-X
  5. S. Ruvimoy, Z. Liliental-Weber, and J. Washburn, "Microstructure of Ti/Al and Ti/Al/Ni/Au ohmic contacts for n-GaN," Appl. Phys. Lett., vol. 69, no. 11, pp. 1556-1558, June 1996. https://doi.org/10.1063/1.117060
  6. Z. Fan, S. N. Mohammand, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, "Very low resistance multilayer ohmic contact to n-GaN," Appl. Phys. Lett., vol. 68, no. 12, pp. 1672-1674, Jan. 1996. https://doi.org/10.1063/1.115901
  7. C. M. Pelto, Y. A. Chang, Y. Chen, R. S. Williams, "Issues concerning the preparation of ohmic contacts to n-GaN," Solid-State Electronics, vol. no. 45, pp. 1597-1605, March 2001. https://doi.org/10.1016/S0038-1101(01)00163-0
  8. Y. Dora, A. Chakraborty, S. Heikman, L. McCarthy, S. P. DenBaars, and U. K. Mishara, "Effect of ohmic contacts on buffer leakage of GaN Transistors," IEEE Electron Device Lett., vol. 27, no. 7, pp. 529 - 531, July 2006. https://doi.org/10.1109/LED.2006.876306
  9. D. Meister, M. Böhm, M. Topf, W. Kriegseis, W. Burkhardt, I. Dirnstorfer, S. Rösel, B. Farangis, B. K. Meyer, A. Hoffmann, H. Siegle, C. Thomsen, J. Christen, and F. Bertram "A comparison of the hall-effect and secondary ion mass spectroscopy on the shallow oxygen donor in unintentionally doped GaN films," Appl. Phys. Lett., vol. 88, no. 4, pp. 1811, Aug. 1999.
  10. M.-W. Ha, C. H. Roh, H. G. Choi, H. J. Song, J. H. Lee, D. W. Hwang, J. H. Park, O. Seok, J. Lim, M.-K. Han, and C.-K. Hahn, "High breakdown voltage GaN Schottky barrier diode on silicon substrate", Int. Microprocesses and Nanotech. Conf., pp. 12D-11-31, Fukuoka, Japan, Nov. 2010.
  11. S. M. Sze, "Physics of semiconductor devices second edition," John wiley & sons, pp. 258, 1981.
  12. J. L. Freeouf and J. M. Woodall, "Schottky barriers: An effective work function model," Appl. Phys. Lett., vol. 39, no. 9, Nov. 1981.
  13. Ben G. Streetman and Sanjay Kumar Banerjee, "Solid state electronic device sixth edition," Pearson education international, pp. 168, 2006.
  14. N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, T. Jimbo, "Thermal annealing effect on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal," Solid-state Electron., vol. 48, no. 5, pp. 689-695, May 2004. https://doi.org/10.1016/j.sse.2003.07.006
  15. H. Kim, J. Lee, D. Liu, and W. Lu, "Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing," Appl. Phys. Lett., vol. 86, no. 14, pp. 143505, March 2005. https://doi.org/10.1063/1.1899255