Generation of Dynamic Routing Information by using Balanced Howell Rotations

Balanced Howell Rotations를 이용한 동적 라우팅 정보 생성

  • Kim, Joon-Mo (Computer Science & Engineering, Dankook University)
  • Received : 2010.11.10
  • Published : 2011.02.25

Abstract

In mobile ad hoc networks where the communication nodes are moving around, one may perform dynamic routing that can increase the total communication throughput of the network, by determining the ranks of pairs of nodes according to their communication throughput. The balanced Howell rotation is a tournament design scheme for bridge games. This paper explains that the balanced Howell rotation can be applied to enhance the overall communication throughput of mobile ad hoc networks, and proposes and proves the condition under which the balanced Howell rotations may exist.

통신 노드들이 이동 중인 mobile ad hoc networks에서, 통신처리율에 따라 노드 쌍들의 순위를 결정하면, 이를 바탕으로 전체 네트워크의 처리율을 향상시키는 동적인 라우팅을 할 수 있다. Balanced Howell rotations는 브리지 게임을 위한 토너먼트 구성 방법의 하나이다. 본 논문에서는 mobile ad hoc networks의 전반적인 통신 처리율 향상을 위해 balanced Howell rotations를 활용할 수 있음을 설명한다. 그리고 balanced Howell rotations가 존재할 수 있는 조건을 제시하고, 이를 증명한다.

Keywords

References

  1. E. T. Parker and A. N. Mood, "Some balanced Howell rotations for duplicate bridge sessions," The American Mathematical Monthly, Vol 62, No. 10, pp. 714-716, 1955. https://doi.org/10.2307/2307076
  2. E. R. Berlekamp and F. K. Hwang, "Contributions for balanced Howell rotations for bridge tournaments," Journal of Combinatorial Theory, Series A, Vol. 12, No. 2, pp. 159-166, 1972. https://doi.org/10.1016/0097-3165(72)90033-7
  3. P. J. Schellenberg, "On balanced Romm squares and complete balanced rotations," Aequationes Mathematicae, Vol. 9, No. 1, pp. 75-90, 1973. https://doi.org/10.1007/BF01838192
  4. O. Hanner, "Construction of balanced Howell rotations for 2(pr + 1) partnership," Journal of Combinatorial Theory, Series A, Vol. 33, No. 2, pp. 205-212, 1982. https://doi.org/10.1016/0097-3165(82)90009-7
  5. D. Z. Du and F. K. Hwang, "Balanced Howell rotations of the twin prime power type," Transactions of the American Mathematical Society, Vol. 271, No. 2, pp. 415-421, 1982. https://doi.org/10.1090/S0002-9947-1982-0654841-X
  6. D. Z. Du and F. K. Hwang, "Symmetrical skew balanced starters and complete balanced Howell rotations," Transactions of AMS, Vol. 271, No. 2, pp. 409-413, 1982. https://doi.org/10.1090/S0002-9947-1982-0654840-8
  7. D. Z. Du and F. K. Hwang, "Existence of symmetric skew balanced starters for odd prime powers," Proceedings of the AMS, Vol. 104, No. 2, pp. 660-667, 1988.
  8. T. Storer, "Cyclotomy and Difference Sets," Lectures in Advanced Mathematics, Vol. 2, Markham Publishing Company, Chicago, Illinois, USA, 1967.
  9. L. K. Hua, "Introduction to Number Theory," Springer-Verlag, Belin, 1982.
  10. D. Z. Du and F. K. Hwang, "A multiplication theorem for balanced Howell rotations," Journal of Combinatorial Theory, Series A, Vol. 37, No. 2, pp. 121-126, 1984. https://doi.org/10.1016/0097-3165(84)90064-5