Extended MLS Difference Method for Potential Problem with Weak and Strong Discontinuities

복합 불연속면을 갖는 포텐셜 문제 해석을 위한 확장된 MLS 차분법

  • 윤영철 (명지전문대학 토목과) ;
  • 노혁천 (세종대학교 토목환경공학과)
  • Received : 2011.08.22
  • Accepted : 2011.09.01
  • Published : 2011.10.31

Abstract

This paper provides a novel extended Moving Least Squares(MLS) difference method for the potential problem with weak and strong discontinuities. The conventional MLS difference method is enhanced with jump functions such as step function, wedge function and scissors function to model discontinuities in the solution and the derivative fields. When discretizing the governing equations, additional unknowns are not yielded because the jump functions are decided from the known interface condition. The Poisson type PDE's are discretized by the difference equations constructed on nodes. The system of equations built up by assembling the difference equations are directly solved, which is very efficient. Numerical examples show the excellence of the proposed numerical method. The method is expected to be applied to various discontinuity related problems such as crack problem, moving boundary problem and interaction problems.

본 논문은 복합 불연속면을 갖는 포텐셜 문제의 해석을 위해 확장된 MLS(Moving Least Squares) 차분법을 제시한다. 계면경계를 따라 해(solution)와 수직방향, 접선방향 미분들이 모두 불연속 특이성을 나타내는 복합 불연속면을 묘사하기 위해 계단함수, 쐐기함수, 가위함수와 같은 불연속 특이함수를 추가하여 기존의 MLS 차분법을 개선했다. 계면경계조건은 기지의 조건으로서 지배방정식의 이산화과정에서 추가의 미지계수를 발생시키지 않는다. 포아송 방정식 형태의 지배미분 방정식을 풀기 위해 내부영역과 경계에 절점을 배치하고 차분식을 구성한다. 차분식을 조립한 계 방정식을 직접 풀기 때문에 계산효율성이 매우 우수하다. 수치예제는 제시된 해석기법의 우수성을 잘 보여주며, 균열전파, 이동경계, 상호작용 문제 등 다양한 불연속 문제로의 확장이 기대된다.

Keywords

References

  1. 윤영철, 김동조, 이상호 (2007) 탄성균열해석을 위한 그리드 없는 유한차분법, 한국전산구조공학회 논문집, 20(3), pp.321-327.
  2. 윤영철, 김도완 (2007) 이동최소제곱 유한차분법을 이용한 계면경계를 갖는 이종재료의 열전달문제 해석, 한국전산구조공학회 논문집 20(6), pp.779-787.
  3. 윤영철, 김도완 (2009) 확장된 이동최소제곱 유한차분법을 이용한 이동경계문제의 해석, 한국전산구조공학회 논문집 22(4), pp.315-322.
  4. Belytschko, T., Lu, Y.Y., Gu, L. (1994) Element- Free Galerkin Methods, International Journal for Numerical Methods in Engineering, 37, pp.229- 256. https://doi.org/10.1002/nme.1620370205
  5. Benzley, S.E. (1974). Representation of Singularities with Isotropic Finite Elements, International Journal for Numerical Methods in Engineering, 8, pp.537-545. https://doi.org/10.1002/nme.1620080310
  6. Fleming, M., Chu, Y.A., Moran, B., Belytschko, T. (1997) Enrichment Element-Free Galerkin Methods for Crack Tip Fields, International Journal for Numerical Methods in Engineering, 40, pp.1483 -1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
  7. Juric D., Tryggvason, G. (1996) A Front-Tracking Method for Dendritic Solidification, Journal of Computational Physics, 123, pp.127-148. https://doi.org/10.1006/jcph.1996.0011
  8. Kim, D.W., Yoon, Y.C., Liu, W.K., Belytschko, T. (2007a) Extrinsic Meshfree Approximation Using Asymptotic Expansion for Interfacial Discontinuity of Derivative, Journal of Computational Physics, Vol.221, pp.370-394. https://doi.org/10.1016/j.jcp.2006.06.023
  9. Kim, D.W., Yoon, Y.C., Liu, W.K., Belytschko, T., Lee, S.H. (2007b) Meshfree Collocation Method with Intrinsic Enrichment for Interface Problems, Computational Mechanics, 40(6), pp.1037-1052. https://doi.org/10.1007/s00466-007-0162-1
  10. LeVeque, R.J., Li, Z. (1994) The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients and Singular Sources, SIAM J. Numer. Anal., 31, pp.1019-1044. https://doi.org/10.1137/0731054
  11. Moes, N., Dolbow, J., Belytschko, T. (1999) A Finite Element Method for Crack Growth without Remeshing, International Journal for Numerical Methods in Engineering, 46(1), pp.131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  12. Osher, S., Sethian, J.A. (1988) Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, Journal of Computational Physics, 79, pp.12-49 https://doi.org/10.1016/0021-9991(88)90002-2
  13. Wawrzynek, P., Ingraffea, A.R. (1987) Interactive Finite Element Analysis of Fracture Processes: An Integrated Approach, Theoretical and Applied Fracture Mechanics, 8, pp.137-150. https://doi.org/10.1016/0167-8442(87)90007-3
  14. Yoon, Y.C., Kim, D.W. (2010) Extended Meshfree Point Collocation Method for Electromagnetic Problems with Layered Singularity, IEEE Transactions on Magnetics, 46(8), pp.2951-2954. https://doi.org/10.1109/TMAG.2010.2046148