A Development of Explicit Algorithm for Stress-Erection Analysis of STRARCH System

스트라치 시스템의 긴장응력해석을 위한 명시적 해석법의 개발

  • Received : 2011.03.14
  • Accepted : 2011.07.11
  • Published : 2011.10.31

Abstract

In this paper, the advanced explicit algorithm is proposed to simulate the stress-erection process analysis of Strarch system. The Strarch(Stressed-Arch) system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames which are erected by a post-tensioning stress-erection procedure. The flexible bottom chord which have sleeve and gap detail are closed by the reaction force of prestressing tendon. The prestress imposing to the tendon will make the Strarch system to be erected. This post tensioning process is called as "stress-erection process". During the stress-erection process, the plastic rigid body rotation is occurred to the flexible top chord by the excessive amount of plastic strain, and the structural characteristic becomes to be unstable. In this study, the large deformational beam-column element with plastic hinge is used to model the flexible top chord, and the advanced Dynamic Relaxation method(DRM) are applied to the unstable problem of stress-erection process of Strarch system. Finally, the verification of proposed explicit algorithm is evaluated by analysing the stress-erection of real project of Strarch system.

본 연구에서는 스트라치 시스템의 긴장설치과정 해석을 수행하기 위한 개선된 명시적 해석법을 제안하였다. 스트라치 시스템은 Stressed-Arch에서 유래한 용어로 슬리브에 의한 갭이 도입된 유동 하현재가 내부의 긴장재에 의한 초기장력의 도입으로 서서히 닫히게 되고, 이에 따라 전체 구조물이 상승하여 최종적인 아치형태의 구조물을 형성하는 독창적인 구조시스템이다. 스트라치 시스템의 초기장력 도입과정을 긴장설치(stress-erection process) 과정이라 하며, 초기곡률의 도입에 따라 유동 상현재에는 과도한 초기변형이 발생하여 소성거동에 의한 강체회전이 발생하는 불안정 구조물이 된다. 본 연구에서는 이러한 스트라치 시스템의 불안정 거동특성을 해석하기 위해서 소성힌지가 적용된 보-기둥요소를 사용하여 유동상현재를 모델링하였고, 불안정 구조물의 해석법에 효과적으로 사용되는 동적이완법의 개선된 알고리즘을 개선하여, 실제 스트라치 구조물의 긴장설치과정 해석을 수행하였으며, 실제 프로젝트에 대한 해석결과의 분석을 통하여 제안된 해석법의 적용성을 검증하였다.

Keywords

References

  1. Barnes, M.R. (1988) Form-finding and Analysis of Prestressed Nets and Membranes, Computers & Structures, 30(3), pp.685-695. https://doi.org/10.1016/0045-7949(88)90304-5
  2. Day, A.S. (1960) An Introduction to Dynamic Relaxation. The Engineer, London.
  3. Clarke, M.J., Hancock, G.J. (1990) A Study of Incremental-Iterative Strategies for Nonlinear Analyses, International Journal for Numerical Methods in Engineering, 29, pp.1365-1391. https://doi.org/10.1002/nme.1620290702
  4. Clarke, M.J., Hancock, G.J. (1991) Finite Element Nonlinear Analysis of Stressed Arch Frames, Journal of Structural Engineering, ASCE, 117(10), pp.2819-2837. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:10(2819)
  5. Clarke, M.J., Hancock, G.J. (1994) The Behaviour and Design of Stressed-Arch(Strarch) Frames, Proc. of IASS-ASCE International Symposium, Atlanta: Spatial, Lattice and Tension Structure, pp.200 -209.
  6. Han, S.E., Lee, K.S. (2003) A Study of the Stabilizing Process of Unstable Structures, Computers & Structures, 81, pp.1677-1688. https://doi.org/10.1016/S0045-7949(03)00187-1
  7. Key, P.W., Chiew, S.P., Tai, T.Y. (1994) Design and Construction of a Long-Span Stressed Arch Hangar in Singapore, Steel Structures, Journal of Singapore Structural Steel Society, 5(1), pp.25-36.
  8. Lee, K.S., Han, S.E. (2011) Semi-rigid Elasto Plastic Post Buckling Analysis a Space Frame with Finite Rotation, International Journal of Advanced Steel Construction, to be published.
  9. Lee, K.S., Han, S.E., Park, Taehyo. (2011) A Simple Explicit Arc-length Method using the Dynamic Relaxation Method with Kinetic Damping, Computers & Structures, 89, pp.216-233. https://doi.org/10.1016/j.compstruc.2010.09.006