재분배 기법 적용에 따른 철근 콘크리트 전단벽-골조 시스템의 비선형 특성 평가

Evaluation of Inelastic Performance of a Reinforced Concrete Shear Wall-Frame System Designed by Resizing Algorithms

  • 투고 : 2010.08.02
  • 심사 : 2011.10.04
  • 발행 : 2011.10.31

초록

반복적인 구조해석의 실행없이 부재 변위 기여도를 이용하여 부재 사이즈를 조절함으로써 건물의 변위를 만족시키는 재분배 기법은 실용적인 변위 설계법으로 인식되고 있다. 기존 연구에서 재분배 기법은 풍하중, 지진하중과 같은 횡하중을 받는 건물의 횡변위를 탄성범위 내에서는 효과적으로 제어할 수 있었으나, 재분배 기법에 따른 비탄성 성능 변화에 대한 연구는 미흡하였다. 본 연구에서는 재분배 기법에 의해 재설계된 구조물의 비탄성 성능변화를 확인하기 위해 7층 철근 콘크리트 전단벽-골조 시스템 예제에 재분배 기법을 적용하였다. 재분배 적용결과, 전단벽-골조 시스템의 상호작용 특성때문에 하층부에서는 전단벽의 물량이 증가하고 상층부에서는 골조의 물량이 증가하였다. 이러한 물량 재분배를 통해 초기 강성은 증가하였으며 연성 성능은 비슷한 수준으로 나타났다.

Recently, the resizing algorithms based on the displacement participation factors have been developed for sizing members to satisfy stiffness criteria. It is proved that this resizing algorithms made for utilizing worker's stiffness design are practical and rational due to the simplicity and convenience of the method. The resizing algorithm can be practically and effectively applied to drift design of buildings. However, the researches on the change of inelastic behavior by the resizing algorithm has been insufficient. To identify the effect on the inelastic behavior of buildings by the resizing method, this study used the reinforced concrete shear wall-frame example. Through the application of the resizing method, the weights of shear wall in the lower class and the weights of columns and beams in the upper class increased respectively. And the initial stiffness of the building increased and the ductility of the buildings had similar with that of the initial structure.

키워드

참고문헌

  1. 권건업, 한상환 (2004) WUF-B 접합부를 가진 모멘트골조의 내진성능 평가, 대한건축학회 논문집 구조계, 20(6), pp.27-34.
  2. 권도형, 서지현, 박효선 (2006) 재분배 기법의 비선형 특성 개선을 위한 기초 연구, 한국전산구조공학회 학술발표 논문집, 19(1), pp.535-540.
  3. 박주남, 최은수 (2007) 취약도 해석을 통한 빌딩구조물의 내진 성능 비교 및 평가, 한국지진공학회 논문집, 11(3), pp.11-21.
  4. 서지현, 박효선 (2001) 재분배 기법을 이용한 고층 구조물의 수평 변위 설계법, 대한건축학회 논문집 구조계, 17(9), pp.73-80.
  5. 서지현, 박효선 (2004) 횡하중과 연직하중을 받는 고층건물의 변위설계를 위한 재분배 기법 개발, 한국전산구조공학회 논문집, 17(1), pp.49-58.
  6. 서지현, 권봉근, 박효선 (2006) 재분배 기법 적용에 따른 모멘트 저항골조의 비선형 특성평가, 한국강구조공학회 논문집, 18(3), pp.361-371.
  7. AISC (2005), Seismic Provisions for Structural Steel Buildings, Chicago, IL.
  8. Bertero, V.V., Akran, A.E., Charney, F.A., Sause, R. (1984) U.S.-Japan Cooperative Earthquake Research Program: Earthquake Simulation Tests and Associated Studies of a 1/5th-scale Model of a 7-story Reinforced Concrete Test Structure. Report No. UCB/EERC-84/05, Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.
  9. Chan, C.M., Grierson, D.E., Sherbourne, A.N. (1995) Automatic Optimal Design of Tall Steel Building Frameworks, Journal of Structural Engineering, 121(5), pp.838-847. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:5(838)
  10. Chan, C.M., Zou, X.K. (2004) Elastic and Inelastic Drift Performance Optimization for Reinforced Concrete Buildings Under Earthquake Loads, Earthquake Eng. Struct. Dyn., 33, pp.929-950. https://doi.org/10.1002/eqe.385
  11. Charney, F.A., Berteo, V.V. (1982) An Evaluation of the Design and Analytical Seismic Response of a Seven-story Reinforced Concrete Frame-wall Structure. Report No. UCB/EERC-82/08, Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.
  12. Federal Emergency Management Agency (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Rep. FEMA 356, Washington, DC.
  13. Liu, M. (2003) Development of Multiobjective Optimization Procedures for Seismic Design of Steel Moment Frame Structures, Ph.D. thesis, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL.
  14. Park, H.S., Park, C.L. (1997) Drift Control of High-rise Buildings with Unit Load Method, The Structural Design of Tall Buildings, 6(1), pp.23-35. https://doi.org/10.1002/(SICI)1099-1794(199703)6:1<23::AID-TAL80>3.0.CO;2-1
  15. Park, H.S., Hong, K.P., Seo, J.H. (2002) Drift Control of Steel-frame Shear-wall Systems for Tall Buildings, Structural Design of Tall Buildings, 11, pp.35-49. https://doi.org/10.1002/tal.187
  16. Park, H.S., Seo, J.H., Kwon, Y.H. (2008) Development of Drift Design Model for High-rise Buildings Subjected to Lateral and Vertical Loads, The Structural Design of Tall and Special Buildings, 17(2), pp.273-293. https://doi.org/10.1002/tal.351
  17. Seo, J.H., Song, W.K., Kwon, Y.H., Hong, K. (2008) Drift Design Model for High-rise Buildings Based on Resizing Algorithm with a Weight Control Factor, The Structural Design of Tall and Special Buildings, 17(3), pp.563-578. https://doi.org/10.1002/tal.366
  18. Silvia, A.K., Frank, M., Michael, H.S., Gregory, L. (2006) Opensees Command Language Manual, Open System for Earthquake Engineering Simulation.
  19. Vulcano A., Bertero, V.V., Colotti, V. (1988) Analytical Modeling of RC Structural Walls, Proceedings, 9th World Conference on Earthquake Engineering (6), Tokyo-Kyoto, Japan.
  20. Yun, S.Y., Hamburger, R.O., Cornel, C.A., Foutch, D.A. (2002) Seismic Performance Evaluation for Steel Moment Frames, Journal of Structural Engineering, 128(4), pp.534-545. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(534)