A Novel Methodology of Improving Stress Prediction via Saint-Venant's Principle

생브낭의 원리를 이용한 응력해석 개선

  • 김준식 (금오공과대학교 기계공학부) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Received : 2010.09.02
  • Accepted : 2010.12.16
  • Published : 2011.04.30

Abstract

In this paper, a methodology is proposed to improve the stress prediction of plates via Saint Venant's principle. According to Saint Venant's principle, the stress resultants can be used to describe linear elastic problems. Many engineering problems have been analyzed by Euler-Bernoulli beam(E-B) and/or Kirchhoff-Love(K-L) plate models. These models are asymptotically correct, and therefore, their accuracy is mathematically guaranteed for thin plates or slender beams. By post-processing their solutions, one can improve the stresses and displacements via Saint Venant's principle. The improved in-plane and out-of-plane displacements are obtained by adding the perturbed deflection and integrating the transverse shear strains. The perturbed deflection is calculated by applying the equivalence of stress resultants before and after post-processing(or Saint Venant's principle). Accuracy and efficiency of the proposed methodology is verified by comparing the solutions obtained with the elasticity solutions for orthotropic beams.

본 논문에서는 생브낭의 원리를 이용하여 보/판/쉘 등의 구조물에서 응력분포를 후처리함으로써 개선할 수 있는 방법을 개발하였다. 생브낭의 원리에 따르면, 주어진 탄성문제에 대해서 실제의 응력분포에 상관없이 합응력들로 문제를 기술할 수 있다. 현재까지 알려진 바에 따르면 유일하게 점근적으로 타당한 이론들은 Euler-Bernoulli(E-B) 보이론과 Kirchhoff-Love(K-L) 판이론 등이 있다. 많은 공학적 문제들이 이 두 이론들에 기초하여 해석되어 왔음은 주지의 사실이다. 하지만, 현대의 공학 문제들은 보다 정확한 해석기법을 요구한다. 본 연구에서는 자유도가 상대적으로 많은 고차이론 등을 사용하지 않고, 고전적인 E-B 또는 K-L 해석결과를 합응력 등가의 원리를 이용하여 후처리함으로써 변위 및 응력분포를 정확하게 예측할 수 있는 방법을 개발하였고, 이방성 보 수치예제를 통해 제안된 방법론을 탄성해석법과 비교 검증하였다.

Keywords

References

  1. 김준식, 조맹효 (2007) 개선된 일차전단변형이론을 이용한 복합재료 적층평판의 고정밀 해석, 한국전산구조공학회 논문집, 19(4), pp.406-418.
  2. 조맹효 (1994) 복합재료 적층판의 고차 이론의 검토, 대한기계학회지, (34)7, pp.517-526.
  3. 조맹효 (2002) 복합재료 적층 평판과 쉘의 전산해석 기법에 관한 소고, 한국전산구조공학회지, 15(1), pp.17-30.
  4. Barber, J.R. (1992) Elasticity, Kluwer Academic Publishers, Netherlands.
  5. Carrera, E. (2003) Historical Review of Zig-zag Theories for Multilayered Plates and Shells, ASME: Applied Mechanics Review, 56, pp.287-308. https://doi.org/10.1115/1.1557614
  6. Dym, C.L., Shames, I.H. (1973) Solid Mechanics: A Variational Approach, McGraw-Hill, New York.
  7. Fan, H., Widera, G.E.O. (1994) On the Use of Variational Principles to Derive Beam Boundary Conditions, ASME: Journal of Applied Mechanics, 61(2), pp.470-471. https://doi.org/10.1115/1.2901469
  8. Gregory, R.D., Wan, F.Y.M. (1984) Decaying States of Plane Strain in A Semi-infinite Strip and Boundary Conditions for Plate Theory, Journal of Elasticity, 14(1), pp.27-64. https://doi.org/10.1007/BF00041081
  9. Heijden, A., Koiter, W.T., Reissner, E., Levine, H.S. (1977) Discussion on Timoshenko Beam Theory is Not Always More Accurate Than Elementary Beam Theory, ASME: Journal of Applied Mechanics, 44(2), pp.357-359. https://doi.org/10.1115/1.3424062
  10. Horgan, C.O., Simmonds, J.G. (1991) Asymptotic Analysis of an End-Loaded, Transversely Isotropic, Elastic, Semi-Infinite Strip weak in Shear, International Journal of Solids and Structures, 27(15), pp.1895-1914. https://doi.org/10.1016/0020-7683(91)90184-H
  11. Jones, R.M. (1975) Mechanics of Composite Materials, McGraw-Hill, Kogakusha,Tokyo.
  12. Nicholson, J.W., Simmonds, J.G., (1977) Timoshenko Beam Theory is Not Always More Accurate Than Elementary Beam Theory, ASME: Journal of Applied Mechanics, 44(2), pp.337-338. https://doi.org/10.1115/1.3424048
  13. Oh, J., Cho, M., Kim, J.S., Grediac, M. (2008) A Finite Element Formulation Based On An Enhanced First Order Shear Deformation Theory for Composite and Sandwich Plates, Journal of Mechanical Science and Technology, 22, pp.871-878. https://doi.org/10.1007/s12206-008-0103-8
  14. Timoshenko, S.P., Goodier, J.N. (1951) Theory of Elasticity, McGraw-Hill, York.
  15. Timoshenko, S.P., Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, McGraw-Hill, Tokyo.