Experimental Study on Shear Strength of Concrete Deep Beam Reinforced FRP Bars

FRP Bar로 보강된 콘크리트 깊은보의 전단강도에 관한 실험적 연구

  • Received : 2010.07.19
  • Accepted : 2010.10.25
  • Published : 2011.02.28

Abstract

This study carried out shear experiment for concrete deep beam reinforced FRP(Fiber Reinforced Polymers) bar to investigate shear strength of deep beam. The test conducted for 15 specimens, and the variables were shear span-to-depth ratio, reinforcement ratio, effective depth, reinforcement components of shear strength. crack, deflection are investigated based on shear experimental. We compared shear strength using ACI 318-08 STM with proposed equations that considered arching action according to shear span-to-depth ratio. Consequently shear strength of deep beam reinforced FRP bar presented higher shear strength than steel bar. ACI STM's predictions are better accurate than other predicting equations.

본 연구는 섬유 보강 폴리머(Fiber Reinforced Polymers, 이하 FRP) bar로 보강된 콘크리트 깊은보의 전단강도을 평가하기 위하여 전단경간비, 보강비, 유효깊이, 주근의 종류를 변수로 총 15개의 시험체에 대한 전단 실험을 수행하였다. 전단 실험을 토대로 FRP bar로 보강된 콘크리트 깊은보의 균열 및 처짐에 대한 거동 조사를 수행하였으며, ACI 318-08의 스트럿-타이 모델(이하 STM)을 이용한 전단강도와 아치작용을 고려한 기존 제안식에 의한 전단강도를 비교 평가하였다. 그 결과 FRP bar로 보강한 경우가 Steel bar로 보강한 경우보다 전단강도가 증가하는 것으로 나타났으며, 전단강도 산정에 있어 ACI 318-08 STM을 이용한 방법이 경험식에 의한 방법보다 상대적으로 정확했다.

Keywords

References

  1. 조장세, 이영학, 김희철 (2010) AFRP 보강근 콘크리트 깊은 보의 전단강도에 관한 실험적 연구, 한국전산구조공학회 정 기학술대회 논문집.
  2. ACI Committee 318 (2008) Building Code Requirements for Structural Concrete (318-08) and Commentary (318R-08), American Concrete Institute, Farmington Hills, Michigan.
  3. ACI Committee 440 (2006) Guide for The Design and Construction of Concrete Reinforced with FRP Bars (440.1R-06), American Concrete Institute, Farmington Hills, Michigan.
  4. CSA S806-02 (2002) Design and Construction of Building Components with Fibre Reinforcement Polymers, Canadian Standard Association, Rexdale, Ontario, Canada.
  5. El-Sayed, A.K., EI-Salakawy, E.F., Benmokrane, B. (2006) Shear Strength of FRP-reinforced Concrete Beams without Transverse Reinforcement, ACI Structural Journal, 103(2), pp.235∼243.
  6. Japan Society of Civil Engineers (1997) Recommendations for Design and Construction of Concrete Structures using Continuous Fiber Reinforced Materials, Research Committee on Continuous Fibre Reinforced Materials, A. Machida(ed), Tokyo, Japan.
  7. Nehdi, M., Omeman, Z., EI-Chabib, H. (2008) Optimal Efficiency Factor in Strut-Tie Model for FRP-Reinforced Concrete Short Beams with $(1.5<{Wfrac{a}{d}}<2.5)$, Material and Structure, 41(10), pp.1,713∼1,727. https://doi.org/10.1617/s11527-008-9359-9
  8. Razaqpur, A.G., Isgor, B.O. (2006) Proposed Shear Design Method for FRP-Reinforced Concrete Members without Stirrups, ACI Structural Journal, 103(1), pp.93∼102.
  9. Tureyen, A.K., Frosch, R.J. (2003) Concrete Shear Strength : Another Perspective, ACI Structural Journal, 100(5), pp.609∼615.