Molecular Orientation and Optical Properties of Liquid Crystal Mixture Films of Photo-Reactive Mesogens and Non-Reactive Nematic Liquid Crystals

광경화성 액정과 비반응성 네마틱 액정 혼합 필름의 분자 배향 및 광학 특성

  • Lee, Mong-Ryong (Materials Research Center for Information Display, Kyung Hee University) ;
  • Shin, Mi-Young (Materials Research Center for Information Display, Kyung Hee University) ;
  • Kim, Sung-Hyun (Materials Research Center for Information Display, Kyung Hee University) ;
  • Song, Ki-Gook (Materials Research Center for Information Display, Kyung Hee University)
  • 이몽룡 (경희대학교 영상정보소재기술 연구센터) ;
  • 신미영 (경희대학교 영상정보소재기술 연구센터) ;
  • 김성현 (경희대학교 영상정보소재기술 연구센터) ;
  • 송기국 (경희대학교 영상정보소재기술 연구센터)
  • Received : 2011.06.24
  • Accepted : 2011.08.19
  • Published : 2011.09.25

Abstract

Reactive mesogens were used to prepare photo-cured liquid crystal films in which orientations of liquid crystal molecules were preserved by crosslinked networks of cured reactive mesogens. The molecular orientations of liquid crystal mixtures of photo-reative mesogens and non-reactive nematic liquid crystals were studied and compared before and after curing reactions. The effects of temperature and the amount of the non-reactive nematic liquid crystal in the mixture on birefringence of the liquid crystal films were investigated. It was found that optical compensation films with different birefringence could be prepared by controlling the amount of the nematic liquid crystals in the reactive mesogen mixtures.

Reactive mesogen인 광경화성 액정은 광반응에 의해 분자들이 네트워크 구조를 형성하여 초기 액정 분자들의 배향을 유지한 상태로 필름을 만들 수 있다. 광경화성의 reactive mesogen과 광반응 그룹이 없는 네마틱 액정을 혼합하여 경화 전과 후의 액정 혼합물의 배향을 비교하였고, 비반응성 네마틱 액정의 양과 온도에 따른 액정필름의 복굴절 변화를 조사하였다. 네마틱 액정의 양에 따라 복굴절이 다른 필름을 얻을 수 있어 reactive mesogen을 이용한 광학 보상필름 응용 가능성을 확인하였다.

Keywords

References

  1. J. Lub, D. J. Broer, R. T. Wegh, E. Peeters, and B. M. I. van der Zande, Mol. Cryst. Liq. Cryst., 429, 77 (2005). https://doi.org/10.1080/15421400590930773
  2. J. Schirmer and T. Schmidt-Kaler, Opt. Commun., 176, 313 (2000). https://doi.org/10.1016/S0030-4018(00)00538-1
  3. S. Hwang, Y. Lim, M. Lee, S. Lee, G. Lee, H. Kang, K. Kim, and H. Choi, Cur. Appl. Phys., 7, 690 (2007). https://doi.org/10.1016/j.cap.2007.03.006
  4. D. Kwon, Y. Lim, E. Jeon, D. Kim, J. Kim, P. Kumar, M. Lee, and S. Lee, Cur. Appl. Phys., 11, 725 (2011). https://doi.org/10.1016/j.cap.2010.11.039
  5. L. H. Wu, S. Luo, C. S. Hsu, and S. T. Wu, Jpn. J. Appl. Phys., 39, 5899 (2000). https://doi.org/10.1143/JJAP.39.5899
  6. F. Li, F. W. Harris, and S. Z. D. Cheng, Polymer, 37, 5321 (1996).
  7. C. D. Hoke, H. Mori, and P. J. Bos, Jpn. J. Appl. Phys., 38, L642 (1999). https://doi.org/10.1143/JJAP.38.L642
  8. Z. Suna, A. Qina, Z. Chena, and Y. Wanga, Liq. Cryst., 37, 345 (2010). https://doi.org/10.1080/02678290903564437
  9. W.-Y. Wu, C.-C. Wang, and A. Y. Fuh, Opt. Express, 16, 17131 (2008). https://doi.org/10.1364/OE.16.017131
  10. A. Y.-G. Fuh, C.-K. Liu, K.-T. Cheng, C.-L. Ting, C.-C. Chen, P. C.-P. Chao, and H.-K. Hsu, Appl. Phys. Lett., 95, 161104 (2009). https://doi.org/10.1063/1.3253413
  11. D. Coates, O. Parri, M. Verrall, K. Slaney, and S. Marden, Macromol. Symp., 154, 59 (2000).
  12. Y.-C. Yang and D.-K. Yang, J. Opt. A: Pure Appl. Opt., 11, 105502 (2009). https://doi.org/10.1088/1464-4258/11/10/105502
  13. P. J. Collings and M. Hird, Introduction to Liquid Crystals Chemistry and Physics, Taylor & Francis Ltd., London, 1997.
  14. F. M. Mirabella, Jr., J. Poym. Sci. Part B: Polym. Phys., 25, 591 (1986).
  15. G. Jung, M. Lee, I. Seo, and K. Song, Polymer(Korea), 35, 272 (2011).
  16. G. Jung, I. Seo, M. Lee, S.-W. Choi, and K. Song, Polymer (Korea), 34, 242 (2010).
  17. Y. V. Kissin and L. A. Rishina, Eur. Polym. J., 12, 757 (1988).
  18. J. Ok and K. Song, Polymer(Korea), 20, 1042 (1996).
  19. R. Banga and J. Yarwood, Langmuir, 11, 618 (1995). https://doi.org/10.1021/la00002a043
  20. M. Martinelli, Opt. Commun., 72, 341 (1989). https://doi.org/10.1016/0030-4018(89)90436-7
  21. S.-T. Wu, U. Efron, and L. D. Hess, Appl. Opt., 23, 3911 (1984). https://doi.org/10.1364/AO.23.003911
  22. B. Wang and W. Hellman, Rev. Sci. Instrum., 72, 4066 (2001). https://doi.org/10.1063/1.1412261
  23. N. K. Sinha, Phys. Chem. Glass., 18, 65 (1977).
  24. J. R. Izatt and L. J. F. Boyle, Appl. Opt., 12, 68 (1973). https://doi.org/10.1364/AO.12.000068
  25. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements, World Scientific, Singapore, 1997.
  26. S. Chandrasekhar, Liquid Crystals, Second edition, Cambridge University Press, Cambridge, 1992.
  27. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, John Wiley & Sons, Canada, 1999.
  28. J.-C. Lim, S.-H. Choi, W. Kim, S. S. Kim, and K. Song, Polymer(Korea), 29, 413 (2005).
  29. N. Kaya, F. Akkurt, and A. Alicilar, Fuller. Nanotub. Car. N., 19, 262 (2011). https://doi.org/10.1080/15363831003721815
  30. A. A. Rodriguez-Rosales, R. Ortega-Martinez, and O. G. Morales-Saavedra, J. Phys.: Conf. Ser., 274, 012138 (2011).