Effect of Carboxylic Acid Group of Functionalized Carbon Nanotubes on Properties of Electrospun Polyacrylonitrile (PAN) Fibers

기능화된 탄소나노튜브의 카르복실산이 전기방사된 폴리아크릴로니트릴 섬유의 물성에 미치는 영향

  • Park, Ok-Kyung (Department of BIN fusion Technology, Chonbuk National University) ;
  • Kim, Ju-Hyung (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Lee, Sung-Ho (Institute of Advanced Composites Materials, Korea Institute of Science and Technology) ;
  • Lee, Joong-Hee (Department of BIN fusion Technology, Chonbuk National University) ;
  • Chung, Yong-Sik (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Kim, Jun-Kyung (Institute of Advanced Composites Materials, Korea Institute of Science and Technology) ;
  • Ku, Bon-Cheol (Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
  • 박옥경 (전북대학교 BIN융합공학과) ;
  • 김주형 (전북대학교 유기소재파이버공학과) ;
  • 이성호 (한국과학기술연구원 복합소재기술연구소) ;
  • 이중희 (전북대학교 BIN융합공학과) ;
  • 정용식 (전북대학교 유기소재파이버공학과) ;
  • 김준경 (한국과학기술연구원 복합소재기술연구소) ;
  • 구본철 (한국과학기술연구원 복합소재기술연구소)
  • Received : 2011.03.22
  • Accepted : 2011.05.02
  • Published : 2011.09.25

Abstract

To study the effects of the acid group of functionalized MWNT (multiwalled carbon nanotube) on the thermal and mechanical properties of polyacrylonitrile(PAN) nanofibers, acid ($H_2SO_4/HNO_3$) treated MWNT (O-MWNT) were further functionalized by diazonium salt reaction with 5-aminoisophthalic acid (IPA). Compared to O-MWNT, IPA-MWNT with isophthalic acid group showed a better dispersion stability in polar solvents and IPA-MWNT/PAN composite film displayed lower heat of reaction (${\Delta}H$) than that of homo PAN when stabilized under air atmosphere. The continuous electrospun fibers were prepared using a conductive water bath. PAN fibers containing 1 wt% of IPA-MWNT showed an increase of tensile strength by 100% and tensile modulus by 240% compared to the PAN fibers without IPA-MWNT.

다중벽 탄소나노튜브(MWNT)의 표면이 산성기로 처리된 MWNT가 polyacrylonitrile(PAN) 섬유의 열적, 기계적 물성에 미치는 영향을 알아 보고자 질산, 황산으로 처리한 MWNT(O-MWNT)를 디아조늄염 반응을 이용하여 MWNT 표면에 이소프탈산(isophthalic acid)을 추가로 도입하였다. O-MWNT와 비교하여 볼 때 이소프탈산으로 처리된 MWNT(IPA-MWNT)가 극성용매 내에서 더 우수한 분산 안정성을 나타내었으며 이를 호모 PAN과 혼합하여 필름을 제조한 후 공기 중에서 열안정화 반응을 모사하였을 때 호모 PAN과 비교시 발열량이 감소하였다. PAN 공중합체와 IPA-MWNT를 혼합한 용액을 전도성 수조 콜렉터를 이용하여 전기방사를 한 결과 연속상의 배향된 섬유제조가 가능하였다. 1 wt%의 IPA-MWNT를 포함한 연속상의 전기방사된 PAN 섬유는 순수한 PAN 섬유와 비교하여 볼 때 인장강도가 100% 증가하였으며, 탄성률은 160% 증가되었다.

Keywords

References

  1. M. K. Seo, B. G. Min, and S. J. Park, Carbon Lett., 9, 324 (2008). https://doi.org/10.5714/CL.2008.9.4.324
  2. H. G. Chae, Y. H. Choi, M. L. Minus, and S. Kumar, Comp. Sci. Tech., 69, 406 (2009). https://doi.org/10.1016/j.compscitech.2008.11.008
  3. T. V. Sreekumar, T. Liu, B. G. Min, H. Guo, S. Kumar, and R. H. Hauge, Adv. Mater., 16, 58 (2004). https://doi.org/10.1002/adma.200305456
  4. L. Moreira, R. Fulchiron, G. Seytre, P. Dubois, and P. Cassagnau, Macromolecules, 43, 1467 (2010). https://doi.org/10.1021/ma902433v
  5. C. Dyke and J. Tour, J. Am. Chem. Soc., 126, 1156 (2003).
  6. J. L. Bahr and J. Tour, Chem. Mater., 13, 3823 (2001). https://doi.org/10.1021/cm0109903
  7. P. Bajaj, T. V. Sreekumar, and K. Sen, Polymer, 42, 1707 (2001). https://doi.org/10.1016/S0032-3861(00)00583-8
  8. J. M. Deitzel, J. Kleinmeyer, D. Harrks and N. C. B. Tan, Polymer, 24, 261 (2001).
  9. Q. Ouyang, L. Cheng, H. Wang, and K. Li, Polym. Degrad. Stab., 93, 1415 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.021
  10. T. V. Sreekumar, L. Chandra, A. Srivastava, and S. Kumar, Carbon , 45, 1114 (2007). https://doi.org/10.1016/j.carbon.2007.02.015
  11. J. Liu, Z. Yue, and H. Fong, Small, 5, 536 (2009). https://doi.org/10.1002/smll.200801440
  12. S. C. Moon and R. J. Farris, Carbon, 47, 2829 (2009). https://doi.org/10.1016/j.carbon.2009.06.027
  13. D. Li, Y. Wang, and Y. Xia, Nano Lett., 3, 1167 (2003). https://doi.org/10.1021/nl0344256
  14. E. Smit, U. Buttner, and R. Sanderson, Polymer, 46, 2419 (2005). https://doi.org/10.1016/j.polymer.2005.02.002
  15. H. Y. Kim, M. S. Gil, Y. H. Jung, H. J. Kim, and B. S. Lee, U.S. Patent 7,354,546 (2008).
  16. D. K. Oh, H. S. Kim, J. T. Oh, and M. Seo, Textile Sci. Eng., 46, 98 (2009).
  17. A. L. Yarin, S. Koombhongse , and D. H. Reneker, J. Appl. Phys., 90, 4836 (2001). https://doi.org/10.1063/1.1408260
  18. B. Li, C.-R. Zhang, F. Cao, S.-Q. Wang, B. Chn, and J.-S. Li, Mater. Sci. Eng. A, 471, 169 (2007). https://doi.org/10.1016/j.msea.2007.03.022
  19. E. Teo, R. Gopal, R. Ramaseshan, K. Fujihara, and S. Ramakrishna, Polymer, 48, 3400 (2007). https://doi.org/10.1016/j.polymer.2007.04.044
  20. A. M. Afifi, S. Nakano, H. Yamane, and Y. Kimura, Macromol. Mater. Eng., 295, 660 (2010). https://doi.org/10.1002/mame.200900406
  21. G. Zhang, S. Sun, D. Yang, J. P. Dodelet, and E. Sacher, Carbon, 46, 196 (2008). https://doi.org/10.1016/j.carbon.2007.11.002
  22. J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, J. Am. Chem. Soc., 123, 6536 (2001). https://doi.org/10.1021/ja010462s
  23. M. D. Ellison and P. J. Gasda, J. Phys. Chem. C, 112, 738 (2008). https://doi.org/10.1021/jp076935k
  24. H. G. Chae, M. L. Minus, and S. Kumar, Polymer, 47, 3494 (2006). https://doi.org/10.1016/j.polymer.2006.03.050