Fabrication of Biodegradable Polyphosphazene Microparticles by Electrohydrodynamic Atomization

전기분무에 의한 생분해성 폴리포스파젠 마이크로입자의 제조

  • Xue, Li-Wei (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology) ;
  • Cai, Qing (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology) ;
  • Ryu, Seung-Kon (Department of Chemical Engineering, Chungnam National University) ;
  • Jin, Ri-Guang (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
  • ;
  • ;
  • 유승곤 (충남대학교 화학공학과) ;
  • Received : 2011.02.14
  • Accepted : 2011.04.12
  • Published : 2011.09.25

Abstract

Biodegradable poly[(glycine ethyl ester)-(phenylalanine ethyl ester) phosphazene](PGPP) microparticles were fabricated by electrohydrodynamic atomization to apply drug release test. Atomization parameters such as applied voltage, polymer concentration, and molecular weight were investigated to inspect their effects on the size and morphology of microparticles. The average diameter of PGPP microparticles decreased as increasing applied voltage and solution flow rate. Dichloromethane/dioxane mixture shows better results for the preparation of microparticles than single solvent owing to the different PGPP solubility in solvent. Blending PGPP polymers with proper molecular weights not only favored the production of spherical PGPP microparticles via electrohydrodynamic atomization, but also provided a way to adjust drug (rifampicin) release behavior. Drug-loaded biodegradable polyphosphazene microspheres can be fabricated via electrohydrodynamic atomization, which has potential use in biomedical applications.

Keywords

References

  1. I. W. Lenggoro, B. Xia, and K. Okuyama, Langmuir, 18, 4584 (2002). https://doi.org/10.1021/la015667t
  2. G. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999). https://doi.org/10.1016/S0032-3861(98)00866-0
  3. I. Uematsu, H. Matsumoto, M. Kenji, M. Minagawa, A. Tanioka, Y. Yamagata, and K. Inoue, J. Colloid Interf. Sci., 269, 336 (2004). https://doi.org/10.1016/j.jcis.2003.08.069
  4. S. N. Jayasinghe, M. J. Edirisighe, and D. Z. Zhang, Nanotechnology, 15, 1519 (2004). https://doi.org/10.1088/0957-4484/15/11/025
  5. C. Berkland, D. W. Pack, and K. Kim, Biomaterials, 25, 5649 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.018
  6. I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, Science, 295, 1695 (2002). https://doi.org/10.1126/science.1067595
  7. J. C. Ijsebaert, K. B. Geerse, J. C. M. Marijnissen, J. J. Lammers, and P. Zanen, J. Appl. Physiol., 91, 2735 (2001). https://doi.org/10.1152/jappl.2001.91.6.2735
  8. B. Bugarski, Q. Li, M. F. A. Goosen, D. Poncelet, R. J. Neufeld, and G. Vunjak, AIChE J., 40, 1026 (1994). https://doi.org/10.1002/aic.690400613
  9. T. Ciach, Int. J. Pharm., 324, 51 (2006). https://doi.org/10.1016/j.ijpharm.2006.06.035
  10. K. B. Geerse and J. C. M. Marijnissen, Electrospray as Means to Produce Monodisperse Drug Particles, L. Grado′n and J. C. M. Marijnissen, Editors, Kluwer Academic Publishers, The Netherlands, pp 75-90 (2003).
  11. S. H. Hong, J. H. Moon, J. M. Lim, S. H. Kim, and S. M. Yang, Langmuir, 21, 10416 (2005). https://doi.org/10.1021/la051266s
  12. D. Luna, L. Timothy, and W. Chi-Hwa, J. Control. Release, 102, 395 (2005). https://doi.org/10.1016/j.jconrel.2004.10.011
  13. X. Jingwei, J. C. M. Marijnissen, and W. Chi-Hwa, Biomaterials, 27, 3321 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.034
  14. X. Jingwei, L. Liangkuang, P. Yiyong, H. Jinsong, and W. Chi-Hwa, J. Colloid Interf. Sci., 302, 103 (2006). https://doi.org/10.1016/j.jcis.2006.06.037
  15. Y. Jun, L. L. Kuang, X. W. Jing, H. J. Song, and W. Chi- Hwa, J. Aerosol Sci., 39, 987 (2008). https://doi.org/10.1016/j.jaerosci.2008.07.003
  16. H. R. Allcock, Chemistry and Applications of Polyphosphazenes, Wiley- Interscience, Hoboken, NJ., 2003.
  17. S. Lakshmi, D. S. Katti, and C. T. Laurencin, Adv. Drug Deliver. Rev., 55, 467 (2003). https://doi.org/10.1016/S0169-409X(03)00039-5
  18. C. T. Laurencin, H. J. Koh, T. X. Neenan, H. R. Allcock, and R. Langer, J. Biomed. Mater. Res., 21, 1231 (1987). https://doi.org/10.1002/jbm.820211006
  19. H. R. Allcock, S. R. Pucher, and A. G. Scepelianos, Biomaterials, 15, 563 (1994). https://doi.org/10.1016/0142-9612(94)90205-4
  20. F. M. Veronese, F. Marsilio, P. Caliceti, P. De Filippis, P. Giunchedi, and S. Lora, J. Control. Release, 52, 227 (1998). https://doi.org/10.1016/S0168-3659(97)00098-9
  21. F. M. Veronese, F. Marsilio, S. Lora, P. Caliceti, P. Passi, and P. Orsolini, Biomaterials, 20, 91 (1999). https://doi.org/10.1016/S0142-9612(97)00104-X
  22. H. R. Allcock, T. J. Fuller, D. P. Mack, K. Matsumura, and K. M. Smeltz, Macromolecules, 10, 824 (1977). https://doi.org/10.1021/ma60058a020
  23. H. R. Allcock, S. R. Pucher, and A. G. Scopelianos, Macromolecules, 27, 1071 (1994). https://doi.org/10.1021/ma00083a001
  24. D. Nishit, P. Balabhaskar, R. R. Angela, P. Kapil, S. Shivshankar, and M. Samir, J. Control. Release, 146, 196 (2010). https://doi.org/10.1016/j.jconrel.2010.04.007
  25. H. R. Allcock, T. J. Fuller, D. P. Mack, and K. Matsumura, Macromolecules, 10, 824 (1977). https://doi.org/10.1021/ma60058a020
  26. H. R. Allcock, W. J. Cook, and D. P. Mack, Inorg. Chem., 11, 2584 (1972). https://doi.org/10.1021/ic50117a003
  27. T. Zhang and Q. Cai, Polym. Mat. Sci. Eng., 22, 90 (2006).
  28. Q. F. Qin, Y. Q. Dai, K. Yi, L. Zhang, S. K. Ryu, and R. G. Jin, Carbon Letters, 11, 176 (2010). https://doi.org/10.5714/CL.2010.11.3.176
  29. R. S. Cheng, Polym. Commun., 4, 159 (1960).
  30. J. T. Yang, in Advances in Protein Chemistry, Academic Press, New York, Vol 14, p 323 (1961).
  31. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999). https://doi.org/10.1016/S0032-3861(99)00068-3
  32. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, Polymer, 44, 4029 (2003). https://doi.org/10.1016/S0032-3861(03)00345-8
  33. M. G. McKee, G. L. Wilkes, R. H. Colby, and T. E. Long, Macromolecules, 37, 1760 (2004). https://doi.org/10.1021/ma035689h
  34. W. K. Son and J. H. Youk, Polymer, 45, 2959 (2004). https://doi.org/10.1016/j.polymer.2004.03.006
  35. M. R. Kasaai and G. Charlet, Food Res. Int., 33, 63 (2000). https://doi.org/10.1016/S0963-9969(00)00024-7
  36. H. Youliang, L. Yanyan, Y. Yizi, L. Dongmei, and Z. Guangtian, J. Aerosol Sci., 39, 525 (2008). https://doi.org/10.1016/j.jaerosci.2008.02.004