DOI QR코드

DOI QR Code

Evaluation of Potential Reference Genes for Quantitative RT-PCR Analysis in Fusarium graminearum under Different Culture Conditions

  • Kim, Hee-Kyoung (Department of Medical Biotehcnology, Soonchunhyang University) ;
  • Yun, Sung-Hwan (Department of Medical Biotehcnology, Soonchunhyang University)
  • Received : 2011.10.25
  • Accepted : 2011.11.02
  • Published : 2011.12.01

Abstract

The filamentous fungus Fusarium graminearum is an important cereal pathogen. Although quantitative realtime PCR (qRT-PCR) is commonly used to analyze the expression of important fungal genes, no detailed validation of reference genes for the normalization of qRT-PCR data has been performed in this fungus. Here, we evaluated 15 candidate genes as references, including those previously described as housekeeping genes and those selected from the whole transcriptome sequencing data. By a combination of three statistical algorithms (BestKeeper, geNorm, and NormFinder), the variation in the expression of these genes was assessed under different culture conditions that favored mycelial growth, sexual development, and trichothecene mycotoxin production. When favoring mycelial growth, GzFLO and GzUBH expression were most stable in complete medium. Both EF1A and GzRPS16 expression were relatively stable under all conditions on carrot agar, including mycelial growth and the subsequent perithecial induction stage. These two genes were also most stable during trichothecene production. For the combined data set, GzUBH and EF1A were selected as the most stable. Thus, these genes are suitable reference genes for accurate normalization of qRT-PCR data for gene expression analyses of F. graminearum and other related fungi.

Keywords

References

  1. Anderson, C. L., Ledet-Jensen, J. and Orntoft, T. 2004. Normalization of real-time quantitative RT-PCR data: a model-based variance estimation approach to identify genes suited for normalization- applied to bladder and colon cancer datasets. Cancer Res. 64:5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
  2. Barber, R. D., Harmer, D. W., Coleman, R. A. and Clark, B. J. 2005. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genomics 21:389-395. https://doi.org/10.1152/physiolgenomics.00025.2005
  3. Bustin, S. A. and Nolan, T. 2004. Pitfalls of quantitative real-time reverse transcription polymerase chain reaction. J. Biomol. Tech. 15:155-166.
  4. Chen, F., Zhang, J., Song, X., Yang, J., Li, H., Tang, H., Liao, and Y.-C. 2011. Combined metabonomic and quantitative realtime PCR analyses reveal systems metabolic changes of Fusarium graminearum induced by Tri5 gene deletion. J. Proteome Res. 10:2273-2285. https://doi.org/10.1021/pr101095t
  5. Cuomo, C. A., Güldener, U., Xu, J.-R., Trail, F. et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400-1402. https://doi.org/10.1126/science.1143708
  6. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. and Scheible, W. R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139:5-17. https://doi.org/10.1104/pp.105.063743
  7. Desjardins, A. E. and Proctor, R. H. 2007. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 119:47-50. https://doi.org/10.1016/j.ijfoodmicro.2007.07.024
  8. Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G. and Zumla, A. 2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques. 37:112-119.
  9. Eisenberg, E. and Levanon, E. Y. 2003. Human housekeeping genes are compact. Trends Genet. 19:362-365. https://doi.org/10.1016/S0168-9525(03)00140-9
  10. Gardiner, D. M., Kazan, K. and Manners, J. M. 2009. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol. Plant-Microbe Interact. 12:1588-1600.
  11. Gardiner, D. M., Kazan, K. and Manners, J. M. 2009. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet. Biol. 46:604-613. https://doi.org/10.1016/j.fgb.2009.04.004
  12. Govindarajulu, M., Pfeffer, P. E., Jin, H., Abubaker, J., Douds, D. D., Allen, J. W., Bucking, H., Lammers, P. J. and Shachar-Hill, Y. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819-823. https://doi.org/10.1038/nature03610
  13. Guldener, U., Seong, K. Y., Boddu, J., Cho, S., Trail, F., Xu, J.-R., Adam, G., Mewes, H. W., Muehlbauer, G. J. and Kistler, H. C. 2006. Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet. Biol. 43:316-325. https://doi.org/10.1016/j.fgb.2006.01.005
  14. Gutierrez, L., Moritz, M., Guénin, S., Pelloux, J., Lefebvre, J. F., Louvet, R., Rusterucci, C., Moritz, T., Guerineau, F., Bellini, C. and Van Wuytswinkel, O. 2008. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 6:609-618. https://doi.org/10.1111/j.1467-7652.2008.00346.x
  15. Hallen, H. E., Huebner, M., Shiu, S. H., Güldener, U. and Trail, F. 2007. Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genet. Biol. 44 :1146-1156. https://doi.org/10.1016/j.fgb.2007.04.007
  16. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. and Vandesompele, J. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8:R19. https://doi.org/10.1186/gb-2007-8-2-r19
  17. Lee, P. D., Sladek, R., Greenwood, C. M. and Hudson, T. J. 2002. Control genes and variability: absence of ubiquitous reference gene transcripts in diverse mammalian expression studies. Genome Res. 12:292-297. https://doi.org/10.1101/gr.217802
  18. Lee, S.-H., Lee, J., Lee, S., Park, E.-H., Kim, K.-W., Kim, M.-D., Yun, S.-H. and Lee, Y.-W. 2009. GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot. Cell 8:116-127. https://doi.org/10.1128/EC.00176-08
  19. Lee, S.-H., Lee, S., Choi, D., Lee, Y.-W. and Yun, S.-H. 2006. Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet. Biol. 43:295-310. https://doi.org/10.1016/j.fgb.2005.12.007
  20. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium lab manual, Blackwell, Ames,
  21. Liu, X., Fu, J., Yun, Y., Yin, Y. and Ma, Z. 2011. A sterol C-14 reductase encoded by FgERG24B is responsible for the intrinsic resistance of Fusarium graminearum to amine fungicides. Microbiology 157:1665-1675. https://doi.org/10.1099/mic.0.045690-0
  22. Lord, J. C., Hartzer, K., Toutges, M. and Oppert, B. 2010. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J. Microbiol. Methods 80:219-221. https://doi.org/10.1016/j.mimet.2009.12.007
  23. Lysoe, E., Bone, K. R. and Klemsdal, S. S. 2009. Real-time quantitative expression studies of the zearalenone biosynthetic gene cluster in Fusarium graminearum. Phytopahtology 99:176-184. https://doi.org/10.1094/PHYTO-99-2-0176
  24. McMullen, M., Jones, R. and Gallenberg, D. 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 81:1340-1348. https://doi.org/10.1094/PDIS.1997.81.12.1340
  25. O'Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97:7905-7910. https://doi.org/10.1073/pnas.130193297
  26. Olsvik, P. A., Lie, K. K., Jordal, A. O., Nilsen, T. O. and Hordvik, I. 2005. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol. Biol. 6:21. https://doi.org/10.1186/1471-2199-6-21
  27. Pandolfi, V., Jorge, E. C., Melo, C. M. R., Albuquerque, A. C. S. and Carrer, H. 2010. Gene expression profile of the plant pathogen Fusarium graminearum under the antagonistic effect of Pantoea agglomerans. Genet. Mol. Res. 9:1298-1311. https://doi.org/10.4238/vol9-3gmr828
  28. Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:2002-2007.
  29. Pfaffl, M. W., Tichopad, A., Prgomet, C. and Neuvians, T. P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper- Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26:509-515. https://doi.org/10.1023/B:BILE.0000019559.84305.47
  30. Seong, K. Y., Zhao, X., Xu, J. R., Güldener, U. and Kistler, H. C. 2008. Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet. Biol. 45:389-399. https://doi.org/10.1016/j.fgb.2007.09.002
  31. Stephens, A. E., Gardiner, D. M., White, R. G., Munn, A. L. and Manners, J. M. 2008. Phases of Fusarium graminearum development and gene expression during crown rot disease of wheat. Mol. Plant-Microbe Interact. 21:1571-1581. https://doi.org/10.1094/MPMI-21-12-1571
  32. Suzuki, T., Higgins, P. J. and Crawford, D. R. 2000. Control selection for RNA quantitation. Biotechniques 29:332-337.
  33. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Pape, A. and Speleman, F. 2002. Accurate normalization of real-time quantitative PCR data by genometric averaging of multiple internal control genes. Genome Biol. 3:e34.

Cited by

  1. A split luciferase complementation assay for studying in vivo protein–protein interactions in filamentous ascomycetes vol.58, pp.3, 2012, https://doi.org/10.1007/s00294-012-0375-5
  2. Self-fertility in Chromocrea spinulosa is a consequence of direct repeat-mediated loss of MAT1-2, subsequent imbalance of nuclei differing in mating type, and recognition between unlike nuclei in a common cytoplasm vol.13, pp.9, 2017, https://doi.org/10.1371/journal.pgen.1006981
  3. Effect ofFusarium culmorum TriGene Transcription on Deoxynivalenol and D3G Levels in Two Different Barley Cultivars vol.163, pp.7-8, 2015, https://doi.org/10.1111/jph.12359
  4. Selection and Evaluation of Reference Genes for Expression Studies with Quantitative PCR in the Model Fungus Neurospora crassa under Different Environmental Conditions in Continuous Culture vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0112706
  5. Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum vol.6, pp.1, 2016, https://doi.org/10.1038/srep28154
  6. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum 2017, https://doi.org/10.1111/mpp.12576
  7. Identification of Multiple Phytotoxins Produced by Fusarium virguliforme Including a Phytotoxic Effector (FvNIS1) Associated With Sudden Death Syndrome Foliar Symptoms vol.29, pp.2, 2016, https://doi.org/10.1094/MPMI-09-15-0219-R
  8. Functional Roles of FgLaeA in Controlling Secondary Metabolism, Sexual Development, and Virulence in Fusarium graminearum vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0068441
  9. A Large-Scale Functional Analysis of Putative Target Genes of Mating-Type Loci Provides Insight into the Regulation of Sexual Development of the Cereal Pathogen Fusarium graminearum vol.11, pp.9, 2015, https://doi.org/10.1371/journal.pgen.1005486
  10. Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0160637
  11. Comparative Validation of Conventional and RNA-Seq Data-Derived Reference Genes for qPCR Expression Studies of Colletotrichum kahawae vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0150651
  12. Functional analyses of individual mating-type transcripts atMATloci inFusarium graminearumandFusarium asiaticum vol.337, pp.2, 2012, https://doi.org/10.1111/1574-6968.12012
  13. α1-Tubulin FaTuA1 plays crucial roles in vegetative growth and conidiation in Fusarium asiaticum vol.166, pp.3, 2015, https://doi.org/10.1016/j.resmic.2015.01.001
  14. Effects of the deletion and over-expression ofFusarium graminearumgeneFgHal2on host response to mycovirusFusarium graminearum virus 1 vol.16, pp.7, 2015, https://doi.org/10.1111/mpp.12221
  15. Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1224-y
  16. l-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum vol.199, pp.6, 2017, https://doi.org/10.1007/s00203-017-1364-3
  17. Selection of reference genes for quantitative real-time RT-PCR assays in different morphological forms of dimorphic zygomycetous fungus Benjaminiella poitrasii vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0179454
  18. Real-time quantitative PCR based method for the quantification of fungal biomass to discriminate quantitative resistance in barley and wheat genotypes to fusarium head blight vol.64, 2015, https://doi.org/10.1016/j.jcs.2015.04.005
  19. The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarium graminearum vol.19, pp.5, 2017, https://doi.org/10.1111/1462-2920.13651
  20. In vitro Scleroderma laeveandEucalyptus grandismycorrhization and analysis ofatp6, 17S rDNA, andrasgene expression during ectomycorrhizal formation vol.54, pp.12, 2014, https://doi.org/10.1002/jobm.201400253
  21. Functional Roles of a Putative B' Delta Regulatory Subunit and a Catalytic Subunit of Protein Phosphatase 2A in the Cereal Pathogen Fusarium graminearum vol.28, pp.3, 2012, https://doi.org/10.5423/PPJ.OA.05.2012.0059
  22. Screening of Deoxynivalenol Producing Strains and Elucidation of Possible Toxigenic Molecular Mechanism vol.9, pp.6, 2017, https://doi.org/10.3390/toxins9060184
  23. Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01229
  24. FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum vol.158, pp.Pt_7, 2012, https://doi.org/10.1099/mic.0.059188-0
  25. Comparison of Trichothecene Biosynthetic Gene Expression between Fusarium graminearum and Fusarium asiaticum vol.30, pp.1, 2014, https://doi.org/10.5423/PPJ.OA.11.2013.0107
  26. Quantification of rice brown leaf spot through Taqman real-time PCR specific to the unigene encoding Cochliobolus miyabeanus SCYTALONE DEHYDRATASE1 involved in fungal melanin biosynthesis vol.50, pp.6, 2012, https://doi.org/10.1007/s12275-012-2538-y
  27. Fusarium oxysporum f. Sp. melonis-melon interaction: Effect of grafting combination on pathogen gene expression 2017, https://doi.org/10.1007/s10658-017-1225-6
  28. Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme vol.16, pp.1, 2016, https://doi.org/10.1186/s12866-016-0761-0
  29. The cAMP-PKA Pathway Regulates Growth, Sexual and Asexual Differentiation, and Pathogenesis in Fusarium graminearum vol.27, pp.6, 2014, https://doi.org/10.1094/MPMI-10-13-0306-R
  30. Transcription Factor RFX1 Is Crucial for Maintenance of Genome Integrity in Fusarium graminearum vol.13, pp.3, 2014, https://doi.org/10.1128/EC.00293-13
  31. Validation of Internal Control Genes for Quantitative Real-Time PCR Gene Expression Analysis in Morchella vol.23, pp.9, 2018, https://doi.org/10.3390/molecules23092331
  32. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections vol.92, pp.9, 2018, https://doi.org/10.1128/JVI.01756-17
  33. Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw. vol.19, pp.1, 2019, https://doi.org/10.1186/s12870-019-1629-x