References
- Anderson, C. L., Ledet-Jensen, J. and Orntoft, T. 2004. Normalization of real-time quantitative RT-PCR data: a model-based variance estimation approach to identify genes suited for normalization- applied to bladder and colon cancer datasets. Cancer Res. 64:5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
- Barber, R. D., Harmer, D. W., Coleman, R. A. and Clark, B. J. 2005. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genomics 21:389-395. https://doi.org/10.1152/physiolgenomics.00025.2005
- Bustin, S. A. and Nolan, T. 2004. Pitfalls of quantitative real-time reverse transcription polymerase chain reaction. J. Biomol. Tech. 15:155-166.
- Chen, F., Zhang, J., Song, X., Yang, J., Li, H., Tang, H., Liao, and Y.-C. 2011. Combined metabonomic and quantitative realtime PCR analyses reveal systems metabolic changes of Fusarium graminearum induced by Tri5 gene deletion. J. Proteome Res. 10:2273-2285. https://doi.org/10.1021/pr101095t
- Cuomo, C. A., Güldener, U., Xu, J.-R., Trail, F. et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400-1402. https://doi.org/10.1126/science.1143708
- Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. and Scheible, W. R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139:5-17. https://doi.org/10.1104/pp.105.063743
- Desjardins, A. E. and Proctor, R. H. 2007. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 119:47-50. https://doi.org/10.1016/j.ijfoodmicro.2007.07.024
- Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G. and Zumla, A. 2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques. 37:112-119.
- Eisenberg, E. and Levanon, E. Y. 2003. Human housekeeping genes are compact. Trends Genet. 19:362-365. https://doi.org/10.1016/S0168-9525(03)00140-9
- Gardiner, D. M., Kazan, K. and Manners, J. M. 2009. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol. Plant-Microbe Interact. 12:1588-1600.
- Gardiner, D. M., Kazan, K. and Manners, J. M. 2009. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet. Biol. 46:604-613. https://doi.org/10.1016/j.fgb.2009.04.004
- Govindarajulu, M., Pfeffer, P. E., Jin, H., Abubaker, J., Douds, D. D., Allen, J. W., Bucking, H., Lammers, P. J. and Shachar-Hill, Y. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819-823. https://doi.org/10.1038/nature03610
- Guldener, U., Seong, K. Y., Boddu, J., Cho, S., Trail, F., Xu, J.-R., Adam, G., Mewes, H. W., Muehlbauer, G. J. and Kistler, H. C. 2006. Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet. Biol. 43:316-325. https://doi.org/10.1016/j.fgb.2006.01.005
- Gutierrez, L., Moritz, M., Guénin, S., Pelloux, J., Lefebvre, J. F., Louvet, R., Rusterucci, C., Moritz, T., Guerineau, F., Bellini, C. and Van Wuytswinkel, O. 2008. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 6:609-618. https://doi.org/10.1111/j.1467-7652.2008.00346.x
- Hallen, H. E., Huebner, M., Shiu, S. H., Güldener, U. and Trail, F. 2007. Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genet. Biol. 44 :1146-1156. https://doi.org/10.1016/j.fgb.2007.04.007
- Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. and Vandesompele, J. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8:R19. https://doi.org/10.1186/gb-2007-8-2-r19
- Lee, P. D., Sladek, R., Greenwood, C. M. and Hudson, T. J. 2002. Control genes and variability: absence of ubiquitous reference gene transcripts in diverse mammalian expression studies. Genome Res. 12:292-297. https://doi.org/10.1101/gr.217802
- Lee, S.-H., Lee, J., Lee, S., Park, E.-H., Kim, K.-W., Kim, M.-D., Yun, S.-H. and Lee, Y.-W. 2009. GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot. Cell 8:116-127. https://doi.org/10.1128/EC.00176-08
- Lee, S.-H., Lee, S., Choi, D., Lee, Y.-W. and Yun, S.-H. 2006. Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet. Biol. 43:295-310. https://doi.org/10.1016/j.fgb.2005.12.007
- Leslie, J. F. and Summerell, B. A. 2006. The Fusarium lab manual, Blackwell, Ames,
- Liu, X., Fu, J., Yun, Y., Yin, Y. and Ma, Z. 2011. A sterol C-14 reductase encoded by FgERG24B is responsible for the intrinsic resistance of Fusarium graminearum to amine fungicides. Microbiology 157:1665-1675. https://doi.org/10.1099/mic.0.045690-0
- Lord, J. C., Hartzer, K., Toutges, M. and Oppert, B. 2010. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J. Microbiol. Methods 80:219-221. https://doi.org/10.1016/j.mimet.2009.12.007
- Lysoe, E., Bone, K. R. and Klemsdal, S. S. 2009. Real-time quantitative expression studies of the zearalenone biosynthetic gene cluster in Fusarium graminearum. Phytopahtology 99:176-184. https://doi.org/10.1094/PHYTO-99-2-0176
- McMullen, M., Jones, R. and Gallenberg, D. 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 81:1340-1348. https://doi.org/10.1094/PDIS.1997.81.12.1340
- O'Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97:7905-7910. https://doi.org/10.1073/pnas.130193297
- Olsvik, P. A., Lie, K. K., Jordal, A. O., Nilsen, T. O. and Hordvik, I. 2005. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol. Biol. 6:21. https://doi.org/10.1186/1471-2199-6-21
- Pandolfi, V., Jorge, E. C., Melo, C. M. R., Albuquerque, A. C. S. and Carrer, H. 2010. Gene expression profile of the plant pathogen Fusarium graminearum under the antagonistic effect of Pantoea agglomerans. Genet. Mol. Res. 9:1298-1311. https://doi.org/10.4238/vol9-3gmr828
- Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:2002-2007.
- Pfaffl, M. W., Tichopad, A., Prgomet, C. and Neuvians, T. P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper- Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26:509-515. https://doi.org/10.1023/B:BILE.0000019559.84305.47
- Seong, K. Y., Zhao, X., Xu, J. R., Güldener, U. and Kistler, H. C. 2008. Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet. Biol. 45:389-399. https://doi.org/10.1016/j.fgb.2007.09.002
- Stephens, A. E., Gardiner, D. M., White, R. G., Munn, A. L. and Manners, J. M. 2008. Phases of Fusarium graminearum development and gene expression during crown rot disease of wheat. Mol. Plant-Microbe Interact. 21:1571-1581. https://doi.org/10.1094/MPMI-21-12-1571
- Suzuki, T., Higgins, P. J. and Crawford, D. R. 2000. Control selection for RNA quantitation. Biotechniques 29:332-337.
- Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Pape, A. and Speleman, F. 2002. Accurate normalization of real-time quantitative PCR data by genometric averaging of multiple internal control genes. Genome Biol. 3:e34.
Cited by
- A split luciferase complementation assay for studying in vivo protein–protein interactions in filamentous ascomycetes vol.58, pp.3, 2012, https://doi.org/10.1007/s00294-012-0375-5
- Self-fertility in Chromocrea spinulosa is a consequence of direct repeat-mediated loss of MAT1-2, subsequent imbalance of nuclei differing in mating type, and recognition between unlike nuclei in a common cytoplasm vol.13, pp.9, 2017, https://doi.org/10.1371/journal.pgen.1006981
- Effect ofFusarium culmorum TriGene Transcription on Deoxynivalenol and D3G Levels in Two Different Barley Cultivars vol.163, pp.7-8, 2015, https://doi.org/10.1111/jph.12359
- Selection and Evaluation of Reference Genes for Expression Studies with Quantitative PCR in the Model Fungus Neurospora crassa under Different Environmental Conditions in Continuous Culture vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0112706
- Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum vol.6, pp.1, 2016, https://doi.org/10.1038/srep28154
- The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum 2017, https://doi.org/10.1111/mpp.12576
- Identification of Multiple Phytotoxins Produced by Fusarium virguliforme Including a Phytotoxic Effector (FvNIS1) Associated With Sudden Death Syndrome Foliar Symptoms vol.29, pp.2, 2016, https://doi.org/10.1094/MPMI-09-15-0219-R
- Functional Roles of FgLaeA in Controlling Secondary Metabolism, Sexual Development, and Virulence in Fusarium graminearum vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0068441
- A Large-Scale Functional Analysis of Putative Target Genes of Mating-Type Loci Provides Insight into the Regulation of Sexual Development of the Cereal Pathogen Fusarium graminearum vol.11, pp.9, 2015, https://doi.org/10.1371/journal.pgen.1005486
- Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0160637
- Comparative Validation of Conventional and RNA-Seq Data-Derived Reference Genes for qPCR Expression Studies of Colletotrichum kahawae vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0150651
- Functional analyses of individual mating-type transcripts atMATloci inFusarium graminearumandFusarium asiaticum vol.337, pp.2, 2012, https://doi.org/10.1111/1574-6968.12012
- α1-Tubulin FaTuA1 plays crucial roles in vegetative growth and conidiation in Fusarium asiaticum vol.166, pp.3, 2015, https://doi.org/10.1016/j.resmic.2015.01.001
- Effects of the deletion and over-expression ofFusarium graminearumgeneFgHal2on host response to mycovirusFusarium graminearum virus 1 vol.16, pp.7, 2015, https://doi.org/10.1111/mpp.12221
- Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1224-y
- l-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum vol.199, pp.6, 2017, https://doi.org/10.1007/s00203-017-1364-3
- Selection of reference genes for quantitative real-time RT-PCR assays in different morphological forms of dimorphic zygomycetous fungus Benjaminiella poitrasii vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0179454
- Real-time quantitative PCR based method for the quantification of fungal biomass to discriminate quantitative resistance in barley and wheat genotypes to fusarium head blight vol.64, 2015, https://doi.org/10.1016/j.jcs.2015.04.005
- The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarium graminearum vol.19, pp.5, 2017, https://doi.org/10.1111/1462-2920.13651
- In vitro Scleroderma laeveandEucalyptus grandismycorrhization and analysis ofatp6, 17S rDNA, andrasgene expression during ectomycorrhizal formation vol.54, pp.12, 2014, https://doi.org/10.1002/jobm.201400253
- Functional Roles of a Putative B' Delta Regulatory Subunit and a Catalytic Subunit of Protein Phosphatase 2A in the Cereal Pathogen Fusarium graminearum vol.28, pp.3, 2012, https://doi.org/10.5423/PPJ.OA.05.2012.0059
- Screening of Deoxynivalenol Producing Strains and Elucidation of Possible Toxigenic Molecular Mechanism vol.9, pp.6, 2017, https://doi.org/10.3390/toxins9060184
- Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01229
- FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum vol.158, pp.Pt_7, 2012, https://doi.org/10.1099/mic.0.059188-0
- Comparison of Trichothecene Biosynthetic Gene Expression between Fusarium graminearum and Fusarium asiaticum vol.30, pp.1, 2014, https://doi.org/10.5423/PPJ.OA.11.2013.0107
- Quantification of rice brown leaf spot through Taqman real-time PCR specific to the unigene encoding Cochliobolus miyabeanus SCYTALONE DEHYDRATASE1 involved in fungal melanin biosynthesis vol.50, pp.6, 2012, https://doi.org/10.1007/s12275-012-2538-y
- Fusarium oxysporum f. Sp. melonis-melon interaction: Effect of grafting combination on pathogen gene expression 2017, https://doi.org/10.1007/s10658-017-1225-6
- Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme vol.16, pp.1, 2016, https://doi.org/10.1186/s12866-016-0761-0
- The cAMP-PKA Pathway Regulates Growth, Sexual and Asexual Differentiation, and Pathogenesis in Fusarium graminearum vol.27, pp.6, 2014, https://doi.org/10.1094/MPMI-10-13-0306-R
- Transcription Factor RFX1 Is Crucial for Maintenance of Genome Integrity in Fusarium graminearum vol.13, pp.3, 2014, https://doi.org/10.1128/EC.00293-13
- Validation of Internal Control Genes for Quantitative Real-Time PCR Gene Expression Analysis in Morchella vol.23, pp.9, 2018, https://doi.org/10.3390/molecules23092331
- Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections vol.92, pp.9, 2018, https://doi.org/10.1128/JVI.01756-17
- Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw. vol.19, pp.1, 2019, https://doi.org/10.1186/s12870-019-1629-x