DOI QR코드

DOI QR Code

A Numerical Analysis on Combustion Characteristics of the Gasoline Engine using Methanol Reformulated Fuels under WOT Condition

전부하 운전조건에서 메탄올 개질연료를 사용한 가솔린 엔진의 연소특성에 대한 수치해석

  • Received : 2011.05.20
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

This research is to decide the possibility of using RM50(reformulated methanol fuel) without any modification of engine by the method of numerical analysis. Comparing the heat release rate, the difference among each fuel was decreased according to the increase of the engine speed, and the maximum heat release rate was higher in the order of RM50 and gasoline fuel. Also, this order corresponds to the order of burning speed. RM50 had the higher turbulent burning speed, and the curve of turbulent intensity was showed similar tendency to the curve of turbulent burning speed. RM50 had relatively high burning speed, short quenching length, high temperature in cylinder, so that it might increase NO emission, but owing to chemical reaction dynamics, it was decreased NO emission. Therefore, in order to predict the possibility of using RM50, it is needed to consider not only the temperature in cylinder by low heating value, but also combustion characteristics including burning speed.

기관의 구조를 변경하지 않는 상태에서 RM50의 사용 가능성에 대한 결정을 하기 위해 수치해석을 수행하였다. 열발생률을 비교한 결과 기관회전수가 증가할수록 각 연료간의 차이가 감소하였으며, RM50, 가솔린의 순서로 열발생률의 최대치가 높음을 알 수 있었다. 이는 연료의 연소속도의 순서와 동일하였다. 난류연소속도는 RM50이 가장 높으며 난류강도의 곡선은 난류 연소속도 곡선과 비슷한 경향을 보이고 있으며 RM50이 다른 연료에 비해 연소속도가 빠르고 소염거리가 짧으므로 연소실의 온도가 높아 NO 배출물을 증가시키는 요인이 되지만 NO의 화학적 반응 동력학의 영향에 의해 결과적으로 NO 배출물을 감소시킨다. 따라서 RM50 연료의 사용 가능성을 예측할 때는 연료의 저위발열량에 의한 실린더내 온도뿐 만 아니라 연소속도를 포함한 연소특성까지 고려할 필요가 있다.

Keywords

References

  1. Battista, V., Gardiner, D. P. and Bardon, M. F., 1990, "Review of the Cold Starting Performance of Methanol and High Methanol Blends in Spark Ignition Engines : Neat Methanol," SAE Paper No. 902154.
  2. Justin Fulton, Frank Lynch, Bryan Willson, 1995, "Hydrogen for Cold Starting and Catalyst Heating in a Methanol Vehicle," SAE Paper No. 951956.
  3. Houliang Li, Srinivasa K. Prabhu, David L. Miller, 1995, "The Effects of Methanol and Ethanol on the Oxidation of a Primary Reference Fuel Blend in a Motored Engine," SAE Paper No. 950682.
  4. Alasfour, 1997, "Butanol-A Single Cylinder Engine Study : Engine Performance," Int. J. energy Res., Vol. 21, pp. 221-30. https://doi.org/10.1002/(SICI)1099-114X(199703)21:3<221::AID-ER249>3.0.CO;2-X
  5. Lee, C. S., 1996, "Effect of Methanol-Blended Fuel Properties on the Combustion Characteristics of a Gasoline Engine," Trans. of the KSME, Vol. 20, No. 10, pp. 3381-3386.
  6. http://www.autoenv.org
  7. Heywood, J. B. (1988). Internal Combustion Engine Fundamentals. Mc-Graw-Hill. New Tork. 383-390, 413-423.
  8. Chun, K. M. and Heywood, J. B. (1987). Estimating Heat Release and Mass of Mixture Burned from SI Engine Pressure Data. Combust. Sci and Tech. 54. 133-143. https://doi.org/10.1080/00102208708947049
  9. Cheung, H. M. and Heywood, J. B. (1993). Evaluation of One-Zone Burn Rate Analysis Procedure using Production SI Engine Pressure Data. SAE Paper No. 932749.
  10. Bense, R. S., Annand, W. J. D. and Baruah, P. C. (1975). A Simulation Model including Intake and Exhaust System for a Single Cylinder 4-stroke cycle SI Engine. Int. J. Mech. Sci. Vol. 17(2). 97-124. https://doi.org/10.1016/0020-7403(75)90002-8
  11. Kuehl, D. K. (1962). Laminar Burning Velocity of Propane-Air Mixture. 8th International Symposium on Combustion. 510-521.
  12. Mattavi, J. N. (1982). Effects of Combustion Chamber Design on Combustion in Spark ignition Engines. SAE Paper No. 821578.
  13. Newhall, H. K. and Starkman, E. S., "Direct Spectroscpics Determination of Nitric Oxide in Reciprocating Engine Cylinders," SAE Paper No. 670122, 1967.