• Title/Summary/Keyword: Cylinder pressure level

Search Result 92, Processing Time 0.025 seconds

A Safety Study on the Stress Characteristics of a Composite Pressure Cylinder for a Use of 70MPa Hydrogen Gas Vehicle (70MPa 수소가스차량용 복합소재 압력용기의 응력특성에 관한 안전성 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This paper presents a stress safety of a composite pressure cylinder for a hydrogen gas vehicle. The composite pressure cylinder in which is composed of an aluminum liner and carbon fiber wound layers contains 104 liter hydrogen gas, and is compressed by a filling pressure of 70 MPa. The FEM computed results are analyzed based on the US DOT-CFFC basic requirement for a hydrogen gas cylinder and KS B ISO specification. The FEM results indicate that the stress, 255.2 MPa of an aluminum liner is sufficiently low compared with that of 272 MPa, which is 95% level of a yield stress for aluminum. Also, the composite layers in which are wound on the surface of an aluminum cylinder are safe because the stress ratios from 3.46 to 3.57 in hoop and helical directions are above 2.4 for a minimum safety level. The proposed composite pressure cylinder wound by carbon fibers is useful for 70 MPa hydrogen gas vehicles.

The Effects of Yaw on the Vortex-Shedding Sound from a Circular Cylinder (원형실린더 와류발생 소음에 대한 경사각 효과)

  • 홍훈빈;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.263-270
    • /
    • 1997
  • For a cylinder in a uniform flow stream, sound is generated by the fluctuating pressure on the cylinder surface due to the vortex shedding behind the cylinder. It is known that the major parameters to predict the sound pressure are the characteristic length of the flow along the cylinder axis and the fluctuating lift coefficient. These parameters strongly depend on the Reynolds number and the yaw angle of the cylinder to the free stream. In this experimental study the effects of yaw on the flow parameters, and consequently on the generated sound are investigated. The surface pressure and the radiated sound are measured simultaneously for different yaw angles and showed that the reduced normal velocity component to the cylinder axis reduces the unsteady lift fluctuation which results in lowered sound press-are level, However, experimental result shows that "the cosine law" which uses the normal velocity component as a characteristic velocity for noise Generation from a yawed cylinder needs to be carefully reviewed. reviewed.

  • PDF

A Study on the Fatigue Life of Autofrettaged Compound Cylinder (자긴가공된 이중후육실린더의 피로수명에 관한 연구)

  • Lee, Eun-Yup;Lee, Young-Shin;Yang, Qui-Ming;Kim, Jae-Hoon;Cha, Ki-Up;Hong, Suk-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.296-309
    • /
    • 2009
  • Thick-walled cylinder with high pressure have had wide application in the armament industry. In the thick-walled cylinder, fatigue crack is generated at inner radius and developed toward the outer radius. To prevent generation of fatigue crack, the autofrettage process had been used. The compressive residual stress induced by the autofrettage process extends loading pressure and fatigue life of the thick-walled cylinder. In this study, the residual stress of single and compound cylinder by the autofrettage process was evaluated. The analytical compressive residual stress of single cylinder was good agreement with experimental result at inner radius. The analysis on the residual stress of compound cylinder was conducted. The compressive residual stress at inner radius was increased with the overstrain level. And fatigue life of the compound cylinder with initial crack was evaluated. The considered initial crack shape was straight and semi-elliptical. The fatigue life was extended with the overstrain level. The fatigue life of the compound cylinder with semi-elliptical crack was longer than straight crack. The suitable way to extend fatigue life of the compound cylinder was proposed.

Mechanical and Operational Factors Affecting the Efficiency of Rice Polishing Machines (정미기의 능률에 미치는 기계적 요인및 작동조건에 관한 연구)

  • No, Sang-Ha
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.15-15
    • /
    • 1976
  • In analyzing the operational characteristics of a rice whitening machine, the internal radial pressure of the machine was measured using strain gage equipment. Changes in cylinder and feed screw configurations, screen type, cylinder speed and counter-pressure levels were examined to determine their impact on the quality and quantity of milled rice and the performance of the machine. The results are summarized as follows: 1. The internal radial pressure in the whitening chamber varied with the surface condition of the grain being processed. During the first or second pass through the machine, pressure was relatively low, reached a maximum after two to three passes with combinations I and II, three to six with combination III and then began to fall. 2. The pitch of the feed screw and the size of the feed gate opening which determine the rate of entry of grain into the whitening chamber, appeared to be the most important factor aff-::cting the degree of radial pressure, quality and quantity of milled rice and the efficiency of the machine. Using a feed screw with a wide pitch (4.8cm), radial pressure was relatively high and head rice recovery ratio \vere quite low. In this case capacity and machine effic?iency were much higher than obtained when using a feed screw with a narrow pitch (2.3cm). Very significant responses in radial pressure, head rice recovery rates and machine capacity were observed with changes in cylinder speed and counter-pressure levels when using the wide pitch feed screw. 3. The characteristics of the screen which surrounds the whitening chamber had an important effect on whitening efficiency. The existence of small protuberances on the original screen resulted in significant increases in both machine capacity and efficiency but without a significant decrease in head rice recovery or development of excessive radial pressure. Further work is required to determine the effects of screen surface conditions and the shape of the cylinderical steel roller on the rate of bran removal, machine efficiency and recovery rates. The size of the slotted perforations 0:1 the screen affects total milled rice recovery. The opening size on the original screen was fabricated to accommodate the round shape of Japonica rice varieties but was not suitable for the more slender Indica type. Milling Indica varieties with this screen resulted in a reduction in total milled rice recovery. 4. An increase in cylinder speed from 380 to 820 rpm produced a positive effect on head rice recovery for all machine combinations at every level of counter-pressure used in the tests. Head rice recovery was considerably lower at 380rpm using a wide screw pitch when compared to the results obtained at speeds from 600 to 820 r.p.m. The effects of cylinder speed On radial pressure, capacity and machine efficiency showed contrasting results, depending on the width of the feed screw pitch. With a narrow feed screw pitch (2.3cm), a direct proportional relationship was observed bet?ween cylinder speed and both radial pressure and machine efficiency. In contrast, using a 4.8 centimeter pitch feed roller produced a series of inverse relationships between the above variables. Based on the results of this study it is recommended when milling Indica type long grain rice varieties that the cylinder speed of the original machine be increased from 500-600 rmp up to a minimum of 800 rpm to obtain a greater abrasive effect between the grain and the screen. The pitch of the feed screw should be also reduced to decr?ease the level of internal radial pressure and to obtain higher machine efficiency and increased quality of milled rice with increased cylinder speeds. Further study on the interaction between cylinder speed and feed screw pitch is recommended. 5. An increase in the counter pressure level produced a negative effect On the head rice recovery with an increase in radial pressure, capacity, and machine efficiency over all combinations and at every level of cylinder speed. 6. Head rice recovery rates were conditioned primarily by the pressure inside the whitening chamber. According to the empirical cha racteristics curve developed in this study, the relationships of head rice recovery ($Y_h$) and machine capacity ($Y_c$/TEX>) to internal radial pressure ($X_p$) followed an inverse quadratic function and a linear function respectively: $$Y_h^\Delta=\frac{1}{{1.4383-0.2951X_p^\ast+0.1425X_p^{\ast\ast}}^2} , (R^2=0.98)$$$$Y_c^\Delta=-305.83+374.37X_p^{\ast\ast}, (R^2=0.88)$$The correlation between capacity and power consumption per unit of brown rice expressed in the following exponential function: $$Y_c^\Delta=1.63Y_c^{-0.7786^\{\ast\ast}, (R^2=0.94)$$These relationships indicate that when radial pressure increases above a certain range (1. 6 to 2.0 kg/$cm^2$ based On the results of the experiment) head ricerecovery decrea?ses in a quadratic relation with a inear increase in capacity but without any decrease in power consump tion per unit of brown rice. On the other hand, if radial pressure is below the range shown above, power consumption increases dramatically with a lin?ear decrease in capacity but without significant increases in head rice recovery. During the operation of a given whitening machine, the optimum radial pressure range or the correct capacity range should be selected by controlling the feed rate and/or counter-pressure keeping in mind the condition of the grain, particulary the hardness. It was observed that the total number of passes is related to radial pessure level, feed rate and counter-pressure level. The higher theradial pressure the fewer num?ber of pass required but with decreased head rice recovery. In particular, when using high feed rates, the total number of passes should be increased to more than three by reducing the counter-pressure level to avoid decreaseases in head rice recovery (less than 65 percent head rice recovery on the basis of brown rice) at every cylinder speed. 7. A rapid rise in grain temperature seemed to have a close relationship with the pressure generated inside the whitening chamber and, subsequently with head rice reco?very rates. The higher the rate of increase, the lower were the resulting head rice recoveries.

Mechanical and Operational Factors Affecting the Efficiency of Rice Polishing Machines (정미기의 능률에 미치는 기계적 요인및 작동조건에 관한 연구)

  • 노상하;최재갑
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-48
    • /
    • 1976
  • In analyzing the operational characteristics of a rice whitening machine, the internal radial pressure of the machine was measured using strain gage equipment. Changes in cylinder and feed screw configurations, screen type, cylinder speed and counter-pressure levels were examined to determine their impact on the quality and quantity of milled rice and the performance of the machine. The results are summarized as follows: 1. The internal radial pressure in the whitening chamber varied with the surface condition of the grain being processed. During the first or second pass through the machine, pressure was relatively low, reached a maximum after two to three passes with combinations I and II, three to six with combination III and then began to fall. 2. The pitch of the feed screw and the size of the feed gate opening which determine the rate of entry of grain into the whitening chamber, appeared to be the most important factor aff-::cting the degree of radial pressure, quality and quantity of milled rice and the efficiency of the machine. Using a feed screw with a wide pitch (4.8cm), radial pressure was relatively high and head rice recovery ratio \vere quite low. In this case capacity and machine effic\ulcorneriency were much higher than obtained when using a feed screw with a narrow pitch (2.3cm). Very significant responses in radial pressure, head rice recovery rates and machine capacity were observed with changes in cylinder speed and counter-pressure levels when using the wide pitch feed screw. 3. The characteristics of the screen which surrounds the whitening chamber had an important effect on whitening efficiency. The existence of small protuberances on the original screen resulted in significant increases in both machine capacity and efficiency but without a significant decrease in head rice recovery or development of excessive radial pressure. Further work is required to determine the effects of screen surface conditions and the shape of the cylinderical steel roller on the rate of bran removal, machine efficiency and recovery rates. The size of the slotted perforations 0:1 the screen affects total milled rice recovery. The opening size on the original screen was fabricated to accommodate the round shape of Japonica rice varieties but was not suitable for the more slender Indica type. Milling Indica varieties with this screen resulted in a reduction in total milled rice recovery. 4. An increase in cylinder speed from 380 to 820 rpm produced a positive effect on head rice recovery for all machine combinations at every level of counter-pressure used in the tests. Head rice recovery was considerably lower at 380rpm using a wide screw pitch when compared to the results obtained at speeds from 600 to 820 r.p.m. The effects of cylinder speed On radial pressure, capacity and machine efficiency showed contrasting results, depending on the width of the feed screw pitch. With a narrow feed screw pitch (2.3cm), a direct proportional relationship was observed bet\ulcornerween cylinder speed and both radial pressure and machine efficiency. In contrast, using a 4.8 centimeter pitch feed roller produced a series of inverse relationships between the above variables. Based on the results of this study it is recommended when milling Indica type long grain rice varieties that the cylinder speed of the original machine be increased from 500-600 rmp up to a minimum of 800 rpm to obtain a greater abrasive effect between the grain and the screen. The pitch of the feed screw should be also reduced to decr\ulcornerease the level of internal radial pressure and to obtain higher machine efficiency and increased quality of milled rice with increased cylinder speeds. Further study on the interaction between cylinder speed and feed screw pitch is recommended. 5. An increase in the counter pressure level produced a negative effect On the head rice recovery with an increase in radial pressure, capacity, and machine efficiency over all combinations and at every level of cylinder speed. 6. Head rice recovery rates were conditioned primarily by the pressure inside the whitening chamber. According to the empirical cha racteristics curve developed in this study, the relationships of head rice recovery ($Y_h$) and machine capacity ($Y_c$/TEX>) to internal radial pressure ($X_p$) followed an inverse quadratic function and a linear function respectively: $$Y_h^\Delta=\frac{1}{{1.4383-0.2951X_p^\ast+0.1425X_p^{\ast\ast}}^2} , (R^2=0.98)$$ $$Y_c^\Delta=-305.83+374.37X_p^{\ast\ast}, (R^2=0.88)$$ The correlation between capacity and power consumption per unit of brown rice expressed in the following exponential function: $$Y_c^\Delta=1.63Y_c^{-0.7786^\{\ast\ast}, (R^2=0.94)$$ These relationships indicate that when radial pressure increases above a certain range (1. 6 to 2.0 kg/$cm^2$ based On the results of the experiment) head ricerecovery decrea\ulcornerses in a quadratic relation with a inear increase in capacity but without any decrease in power consump tion per unit of brown rice. On the other hand, if radial pressure is below the range shown above, power consumption increases dramatically with a lin\ulcornerear decrease in capacity but without significant increases in head rice recovery. During the operation of a given whitening machine, the optimum radial pressure range or the correct capacity range should be selected by controlling the feed rate and/or counter-pressure keeping in mind the condition of the grain, particulary the hardness. It was observed that the total number of passes is related to radial pessure level, feed rate and counter-pressure level. The higher theradial pressure the fewer num\ulcornerber of pass required but with decreased head rice recovery. In particular, when using high feed rates, the total number of passes should be increased to more than three by reducing the counter-pressure level to avoid decreaseases in head rice recovery (less than 65 percent head rice recovery on the basis of brown rice) at every cylinder speed. 7. A rapid rise in grain temperature seemed to have a close relationship with the pressure generated inside the whitening chamber and, subsequently with head rice reco\ulcornervery rates. The higher the rate of increase, the lower were the resulting head rice recoveries.

  • PDF

A Study of Flow Induced Noise for Multilayered Cylinder due to Turbulent Boundary Layer (난류경계층에 의한 다층재질 원통형 실린더의 유체소음 해석 연구)

  • 신구균;홍진숙;이헌곤
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.671-677
    • /
    • 1996
  • This paper presents the analytical method for predicting turbulence- induced noise in the multilayered cylinder composed of an outer hose, an inner fluid and an internal core. It is assumed that an infinite axisymmetric cylinder is located horizontally in water with free stream velocity and the turbulent boundary layer (TBL) surrounding the outer hose is fully developed and homogeneous. The transfer function at the core surface due to the propagation of the pressure fluctuation within the TBL is formulated using the linearized Navier-Stockes equation for solid and fluid. In the estimation of the energy spectrum of wall pressure fluctuation, the empirical formula proposed by Strawderman based on the Corcos model is used. A general algorithm for the calculation of the pressure level at the surface of a core, that is, turbulence- induced noise, is presented. Through the detailed numerical simulation, it is found that the major noise mechanism is the propagation of the bulge wave along hose.

  • PDF

Experimental Study on Optimum Pulse Jet Cleaning Conditions of a Cartridge Filter System (카트리지 필터 여과집진기 충격기류시스템의 최적탈진조건에 관한 실험적 연구)

  • Piao, Cheng Xu;Ha, Hyun Chul;Kim, Sung Joon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.542-553
    • /
    • 2015
  • Objectives: Many types of dust collector are used for industrial ventilation, with the most common types being the cylinder bag filter system, rectangular bag filter system and cylinder type cartridge filter system. The cylinder type cartridge bag filter, which has more filtering area than other types of bag filter, can increase the pulse time and extend the useful life of the filter. This can save operational costs and installation area. Materials: This study used cylinder type cartridge bag filter equipment and tested the impact of vibration level and filter pressure with different pulse jet cleaning conditions. The final, cleaning efficiency was calculated through input dust mass and cleaning dust mass Conclusions: Two optimum cleaning condition groups were found. The first condition group was $3kgf/cm^2$ pulse pressure, 15 cm pulse distance, 0.2 s pulse time with an H-10 type nozzle. The second condition group was $3kgf/cm^2$ pulse pressure, 15 cm pulse distance, 0.3 s pulse time with an H-10 type nozzle.

Knock Characteristics and Measurement of Knock Location in a 4-Valve SI Engine (4-Valve SI 엔진의 Knock 특성 및 Knock 발생부위 측정)

  • 이경환;이시훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.153-161
    • /
    • 1998
  • The knock in a spark ignition engine has been investigated to avoid the damage to the engine and unpleasant feeling caused by the pressure waves propagating across the combustion chamber. Knock intensity and knock onset angle were used as physical parameters to quantify the knock characteristics. The knock intensity is defined as a peak to peak value of the bank pass filtered combustion pressure signal and the knock onset angle is determined as the crank angle at which this signal exceeded the threshold level on each cycle. The cyclic variation of knock in four valve single cylinder engine was investigated with these two parameters. The location of autoignition was also examined by ion probes in the cylinder head gasket and squish region in the combustion chamber. For this measurement, a single cylinder engine was modified to accept the pressure transducer, 18 ion probes in the squish region and 8 ion probes in the specially designed PCB (Printed \ulcornerCircuit Board) cylinder head gasket.

  • PDF

Process of Structural Design and Analysis of Thin Pressure Cylinder for Shallow Sea Usage (천해용 얇은 외압 실린더의 설계와 해석 과정)

  • Lee, Jae-Hwan;Maring, Kothilngam;Kim, So-Ul;Oh, Taek-Chan;Park, Byoung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.201-207
    • /
    • 2016
  • In this paper, an aluminum pressure vessel (cylinder) for a 200 m water depth is designed and analyzed. Because of their lack of usage in the deep sea, only a few papers about pressure vessels subjected to external pressures have previously been published. Moreover, the high level of imported external-pressure-vessel products limits the academic pursuit. Yet, research on internal pressure vessels is widely available because of their broad usage at onshore. This paper presents the process of basic designing and modelling of pressure vessels using the design rules of American Standard of Mechanical Engineering (ASME) Section VIII Division 1. To promote understanding, finite element analysis (FEA) result of an existing sample cylinder which was not designed by ASME code is compared with the design obtained in this paper. Several methodologies are used for the finite element analysis, including rectangular, cylindrical, and axisymmetric coordinate, to attain an accurate stress result. Same dimensions except the thickness of the cylinder and loading condition of 0.200 MPa was given for the current study. Finally, a rigorous design procedure is added for the bolt and boundary conditions of the cylindrical body and its ends. The obtained stress level satisfies the allowable design stress value specified in the ASME code.

Finite Element Analysis of Cylinder Head/Block Compound (엔진 실린더 헤드/블록의 유한 요소 해석)

  • Kim, Beom-Keun;Chang, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.28-38
    • /
    • 2003
  • Finite element analysis of cylinder heat/block compound under assembly, thermal and firing condition were performed. FE model including two cylinders with gasket, head bolts, liners and valve seats was used. FE modeling method and boundary conditions were introduced. Stress distribution and deformation of cylinder head and block under each loading condition were presented. Gasket pressure distribution and bore distortion level were predicted. Measured data of bore distortion was compared with the analysis results. The analysis result showed similar trends with the experimental data. High cycle fatigue analysis on the basis of this result has been performed in order to find the critical areas of the engine assembly.