Determination of $^{226}Ra$ Isotope in the Leachate around Phosphogypsum Stack Using Ethylenediaminetetraacetic Acid (EDTA)

Ethylenediaminetetraacetic acid (EDTA)를 이용한 인산석고 야적장 침출수 중의 $^{226}Ra$ 분석법 개발

  • 김근호 (과학기술연합대학원대학교) ;
  • 김용재 (과학기술연합대학원대학교) ;
  • 장병욱 (과학기술연합대학원대학교)
  • Received : 2011.10.10
  • Accepted : 2011.11.14
  • Published : 2011.12.30

Abstract

Ba is the most useful element to get the $Ba(Ra)SO_4$ precipitate. However, when the high concentrations of ions such as sulfate, calcium are existed in the leachate of phosphogypsum stack, it is difficult to get the $Ba(Ra)SO_4$ precipitate. Since this reason, the developed method for the Ba coprecipitate using EDTA was performed to determine the $^{226}Ra$ concentration in the high sulfate sample. The average concentration of $^{226}Ra$ in a leachate of phosphogypsum using this method was 0.102 $Bq{\cdot}kg^{-1}$ and the minimal detectable activity is 3.4 $mBq{\cdot}kg^{-1}$. The $mBq{\cdot}kg^{-1}$ method was 0.102 $Bq{\cdot}kg^{-1}$ and the minimal detectable activity is 3.4 $mBq{\cdot}kg^{-1}$. The $^{226}Ra$ stock solution and the CRM (Certified Reference Material) were analyzed to verify this method. In analyzed $^{226}Ra$ stock solution, bias with added concentration was approximately 1% and the correlation curve between $^{226}Ra$ concentration in simulated standard sample and measured $^{226}Ra$ concentration showed good agreement with a correlation coefficient ($R^2$) of 0.99. In analyzed CRM, maximum bias with reference value was 5.8% (k=1) and the analytical results were in good agreement with the reference value.

일반적으로 사용되는 액체섬광계수기를 이용한 $^{226}Ra$ 분석에는 Ba 공침법을 통해 얻어진 $Ba(Ra)SO_4$ 침전물을 이용하게 된다. 그러나, 인산석고 침출수의 경우 ${SO_4}^{2-}$, $Ca^{2+}$등의 이온이 다량 존재하여 순수한 $Ba(Ra)SO_4$ 침전물을 얻기가 힘들기 때문에 정확한 분석이 매우 어렵다. 본 연구에서는 분석화학에서 금속이온의 분리에 일반적으로 많이 활용되는 Ethylenediaminetetraacetic acid (EDTA)를 이용하여 인산석고 침출수에서의 Ba 공침법을 개발하였고 실제 인산석고 야적장 주변 침출수의 분석에 적용하였다. 또한 개발된 분석 방법은 침출수와 유사한 매질의 $^{226}Ra$ 모의표준시료을 제조하여 확인하였고 IAEA-434 인증표준물질을 통해 분석 신뢰성을 검증하였다. 실제 인산석고 야적장 침출수를 분석한 결과 0.102 $Bq{\cdot}kg^{-1}$의 농도를 보였고 검출하한치는 3.4 $mBq{\cdot}kg^{-1}$였다. $^{226}Ra$ 모의표준시료 분석을 통한 측정농도는 첨가한 농도와 1% 내외로 잘 일치하며 좋은 상관관계($R^2$=0.99)를 보였다. 인증표준물질의 분석 결과 인증값과 비교하여 5.8% (k=1)이내로 잘 일치하였다.

Keywords

References

  1. Rutherdord PM, Dudas MJ, Samek RA. Environmental impacts of phosphogypsum. Sci. Total Environ. 1994;149:1-38. https://doi.org/10.1016/0048-9697(94)90367-0
  2. Bolivar JP, Garcia-Tenorio R, Garcia-LeonM. On the fractionation of natural radioactivity in the production of phosphoric acid by the wet acid method. J. Radional. Nucl. Chem. Lett. 1996;214: 77-78. https://doi.org/10.1007/BF02164808
  3. 이길재, 고상모, 장병욱, 김통권, 김용욱. 인광석 사용업체 주변 환경시료의 자연방사능 조사. 자원환경 지질. 2011;44(1):37-48.
  4. May A, Sweeney JW. Evaluation of Radium and Toxic Element Leaching Characteristics of Florida Phosphogypsum Stockpiles. U.S. Bureau of Mines. Report No. 8776 1983:1-19.
  5. Carter OC, Scheiner BJ. Investigation of metal and non-metal migration through phosphogypsum. In: Richardson, P.E., El-Shall, H. (Eds.). AIME Proceedings on the Symposium on Emerging process Technologies for a Cleaner Environment. 1992:205-210.
  6. Berish CW. Potential environmental hazards of phosphogypsum storage in central Florida. In: Proceedings of the third international symposium on phosphogypsum. Orlando. FL, FIPR Pub. No. 01060083; 2. 1990:1-29.
  7. Reijnders L. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials, A review. Build. Environ. 2007;42(2):1036-1042. https://doi.org/10.1016/j.buildenv.2005.09.016
  8. Vasile M, Benedik L, Altzitzoglou T, Spasova Y, Watjen U, Gonzalez de Orduna R, Hult M, Beyermann M, Mihalcea I. 226Ra and 228Ra determination in mineral waters . Comparison of methods. Appl. Radiat. Isot. 2010;68:1236-1239. https://doi.org/10.1016/j.apradiso.2009.11.018
  9. Jia G, Torri G, Innocenzi P, Ocone R, Di Lullo A. Determination of radium isotopes in mineral water 12samples by a-spectrometry. International Congress Series 1276. 2005;412-414.
  10. Kim YJ, Kim CK, Lee JI. Simultaneous determination of 226Ra and 210Pb in groundwater and soil samples by using the liquid scintillation counter - suspension gel method. Appl. Radiat. Isot. 2001;54:275-281 https://doi.org/10.1016/S0969-8043(00)00190-1
  11. MANJON G, VIOQUE I, MORENO H., GARCIATENORIO R, GARCIA-LEON M. Determination of 226Ra and 224Ra in Drinking Waters by Liquid Scintillation Counting. Appl. Radiat. Isot. 1997; 48(4):535-540. https://doi.org/10.1016/S0969-8043(96)00297-7
  12. Shakhashiro A, Sansone U, Wershofen H, Bollhofer A, Kim CK, Kim CS, Kis-Benedek G, Korun M, Moune M, Lee SH, Tarjan S, Al-Masri S. The new IAEA reference material: IAEA-434 technologically enhanced naturally occurring radioactive materials (TENORM) in phosphogypsum. Appl. Radiat. Isot. 2011;69:231-236. https://doi.org/10.1016/j.apradiso.2010.09.002
  13. 한국원자력안전기술원. 전국 실내 라돈 농도 및 공간 감마선량률 준위 조사. 과학기술부. 2005.
  14. Karamanis D, Ioannides KG, Stamoulis KC. Determination of 226Ra in aqueous solutions via sorption on thin films and $\alpha$-spectrometry. Anal. Chim. Acta. 2006;573-574:319-327.
  15. Higuchi H, Uesugi M, Satoh K, Ohashi N. Determination of radium in water by liquid scintillation counting after preconcentration with ion-exchange resin. Anal. Chem. 1984;56:761-763. https://doi.org/10.1021/ac00268a039
  16. JCAC Radioactivity Measurement series No. 19, Analysis of Radium (in Japanese). Science and Technology Agency Japan, Japan 1991.
  17. Kuo Y, Lai S, Huang C, Lin U. Activity concentrations and population dose from radium-226 in food and drinking water in Taiwan. Appl. Radiat. Isot. 1997;48:1245-1249. https://doi.org/10.1016/S0969-8043(97)00213-3
  18. Lasheen Yasser F., Seliman Ayman F., Abdel- Rassoul AA. Simultaneous measurement of 226Ra and 228Ra in natural water by liquid scintillation counting. J. Environ. Radioact. 2007;95:86-97. https://doi.org/10.1016/j.jenvrad.2007.02.002
  19. Garcia-Tenorio R. Ra and U isotopes determination in phosphogypsum leachates by alphaparticle spectrometry. Radioactivity in the environment 2005;7:160-165.
  20. Haridasan PP, Maniyan CG, Pillai PMB., Khan AH. Dissolution characteristics of 226Ra from phosphogypsum. J. Environ. Radioact. 2002; 62:287-294. https://doi.org/10.1016/S0265-931X(02)00011-5
  21. 한국지질자원연구원, 천연방사성산업물질실태조사, 한국원자력안전기술원, 2010:18-28.
  22. Harris Daniel C. Quantitative Chemical Analysis. 7th ed. New York; W.H.Freeman & Co, 2006: 283-309.
  23. U.S. Department of Energy. Quality Control and Detection Limits In: EML HASL-300 Procedure Manual. 28th ed. New York; U.S. Department of Energy, 1997:1-18.