References
- C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sin. (Engl. Ser.) 22 (2006), 1789-1796. https://doi.org/10.1007/s10114-005-0697-z
-
C. Baak, D. Boo and Th.M. Rassias, Generalized additive mapping in Banach modules and isomorphisms between
$C^*$ -algebras, J. Math. Anal. Appl. 314 (2006), 150-161. https://doi.org/10.1016/j.jmaa.2005.03.099 - L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4, no. 1 (2003), Art. ID 4.
- P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86. https://doi.org/10.1007/BF02192660
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
- J. Diaz and B. Margolis, A flxed point theorem of the alternative for contrac- tions on a generalized complete metric space, Bull. Amer. Math. Soc. (N.S) 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D.H. Hyers, G. Isac and Th.M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific Publishing Co., Singapore, New Jersey, London, 1997.
- D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
- F.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153. https://doi.org/10.1007/BF01830975
-
G. Isac and Th.M. Rassias, Stability of
$\psi$ -additive mappings: appications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), 219-228. https://doi.org/10.1155/S0161171296000324 - S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Florida, 2001.
- C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory Appl. 2007 (2007), Art. ID 50175. https://doi.org/10.1155/2007/50175
-
C. Park and J. Hou, Homomorphisms between
$C^*$ -algebras associated with the Trif functional equation and linear derivations on$C^*$ -algebras, J. Korean Math. Soc. 41 (2004), 461-477. https://doi.org/10.4134/JKMS.2004.41.3.461 -
C. Park, J. Hou and S. Oh, Homomorphisms between J
$C^*$ -algebras and between Lie$C^*$ -algebras, Acta Math. Sin. (Engl.Ser.) 21 (2005), 1391-1398. https://doi.org/10.1007/s10114-005-0629-y -
C. Park and Th.M. Rassias, On a generalized Trif 's mapping in Banach mod- ules over a
$C^*$ -algebra, J. Korean Math. Soc. 43 (2006), 323-356. https://doi.org/10.4134/JKMS.2006.43.2.323 - J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), 445-446.
- J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), 268-273. https://doi.org/10.1016/0021-9045(89)90041-5
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th.M. Rassias, On modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), 106-113. https://doi.org/10.1016/0022-247X(91)90270-A
- Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai, Ser. Math. XLIII (1998), 89-124.
- Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378. https://doi.org/10.1006/jmaa.2000.6788
- Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284. https://doi.org/10.1006/jmaa.2000.7046
- Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130. https://doi.org/10.1023/A:1006499223572
- Th.M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
- Th.M. Rassias and P. Semrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338. https://doi.org/10.1006/jmaa.1993.1070
- Th.M. Rassias and K. Shibata, Variational problem of some quadratic func- tionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253. https://doi.org/10.1006/jmaa.1998.6129
- F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
- S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.