References
- P.P. Chaudhuri, D.R. Chowdhury, S. Nandi and S. Chattopadhyay, Additive celullar automata theory and applications, IEEE Computer Society Press, Los Alamitos California 1, 1997.
- Z. Cinkir, H. Akin and I. Siap, Reversivility of 1D cellular automata with periodic boundary over finite fields Zp, J. Stat. Phys. 143 (2011), no. 4, 807-823. https://doi.org/10.1007/s10955-011-0202-2
- S. Das and B.K. Sikdar, Characterization of 1-d periodic boundary reversible CA, Electron. Notes Theor. Comput. Sci. 252 (2009), 205-227. https://doi.org/10.1016/j.entcs.2009.09.022
- J.G. Kim, A characterization of cycle lengths of cellular automata, J. Chungcheong Math. Soc. 23 (2010), no. 4, 785-791.
- J.G. Kim, Characterization of cellular automata with rule 102 and periodic boundary condition, submitted.
- J.G. Kim, On state transition diagrams of cellular automata, East Asian Math. J. 25 (2009), no. 4, 517-525.
- J. von Neumann, The theory of self-reproducing automata, A. W. Burks ed., Univ. of Illinois Press, Univ. and London, 1966.
- N. Nobe and F. Yura, On reversibility of cellular automata with periodic bound- ary condition, J. Phys. A: Math. Gen. 37 (2004), 5789-5804. https://doi.org/10.1088/0305-4470/37/22/006
- W. Pries, A. Thanailakis and H.C. Card, Group properties of cellular automata and VLSI applications, IEEE Trans. Computers C-35 (1986), no. 12, 1013-1024.
- S.Wolfram,Cellular automata and complexity-Collected Papers, AddisonWesley, 1994.
Cited by
- PERIODICITIES OF SOME HYBRID CELLULAR AUTOMATA WITH PERIODIC BOUNDARY CONDITION vol.31, pp.4, 2018, https://doi.org/10.14403/jcms.2018.31.1.511