EXPERIMENTAL
All chemicals including 1,5-dihydroxynaphthalene and AgX (X- = NO2-, NO3- and ClO4-) were purchased from Aldrich, and used without further purification. Infrared spectra were obtained on a Nicolet 380 FTIR spectrometer with samples prepared as KBr pellets. 1H and 13C NMR spectra were recorded on a Varian Mercury Plus 300 operating at 300.00 MHz and 75.00 MHz, espectively. Elemental microanalyses (C, H, N) were performed on solid samples by the Pusan center, KBSI, using a Vario-EL III.
1,5-Bis(isonicotinoyloxy)naphthalene (L)
Triethylamine (10.56 mmol, 1.47 mL) was added to a stirred mixture of 1,5-dihydroxynaphthalene (2 mmol, 0.320 g) and isonicotinoyl chloride hydrochloride (4.8 mmol, 0.854 g) in chloroform (120 mL) at room temperature. The reaction mixture was refluxed for 24 h. The solution was filtered, and then the filtrate was washed with 0.5 N NaOH and water several times. The chloroform layer was dried using magnesium sulfate and filtered. Evaporation of the chloroform gave a deep red product. The product was finally recrystallized in a solvent pairof chloroform and n-hexane to give L asyellowcrystals in a 79% yield. IR (KBr): 1743(s), 1600(m), 1407(s), 1234(s), 1097(s), 792(m) cm-1; 1H NMR (CDCl3): δ8.95 (d, J = 4.2 Hz, 4H),8.14 (d, J = 4.2 Hz, 4H), 7.88 (d, J = 8.7Hz, 2H), 7.59 (d, J = 7.5Hz, 2H), 7.45 (d, J = 7.2 Hz, 2H); 13C NMR (CDCl3): δ179.86, 151.19, 146.70, 128.19, 126.55, 123.39, 119.75, 119.17, 100.09; Anal. Calcd. for C22H14N2O4: C, 71.35; H, 3.81; N, 7.56. Found: C, 71.34; H, 3.81; N, 7.56.
Synthesis of [Ag2(NO2)2(L)]n
An ethanol solution (5 mL) of AgNO2 (0.01 mmol, 0.0015 g) was layered onto a tetrahydrofuran solution (5 mL) of L (0.005 mmol, 0.0019 g). After 7 days, yellow crystals suitable for X-ray crystallography were obtained in a 57% yield (0.0020 g) based on Ag(I) salt. IR (KBr): 1743(s), 1558(m), 1407(s), 1270(s, μ(NO2-)), 1234(s), 1097(m), 792(m) cm-1; Anal. Calcd. for C23H17N4O8Ag2: C, 39.85; H, 2.47; N, 8.08. Found: C, 39.82; H, 2.50; N, 8.09.
Synthesis of [Ag(L)]n(NO3)n
A methanol solution (5 mL) of AgNO3 (0.01 mmol, 0.0017 g) was layered onto a dichloromethane solution (5 mL) of L (0.01 mmol, 0.0037 g). After 4 days, yellow crystals suitable for X-ray crystallography were obtained in a 77% yield (0.0042 g) based on Ag(I) salt. IR (KBr): 1745(s), 1600(m), 1403(m), 1384(s, μ(NO3-)), 1234(s), 1099(s), 792(m)cm-1; Anal. Calcd. for C22H14N3O7Ag: C, 48.91; H, 2.61; N, 7.78. Found: C, 48.91; H, 2.63; N, 7.79.
Synthesis of [Ag(L)]n(CLO4)n·nH2O
A methanol solution (5 mL) of AgClO4 (0.01 mmol, 0.002 g) was layered onto a tetrahydrofuran solution (5 mL) of L (0.01 mmol, 0.0037 g). After 4 days, yellow crystals suitable for X-ray crystallography were obtained in a 78% yield (0.0045 g) based on Ag(I) salt. IR (KBr): 1743(s), 1600(m), 1407(m), 1234(s), 1097(s), 1087(s, μ(ClO4-)), 792(m) cm-1; Anal. Calcd. for C22H16N2O9ClAg: C, 44.36; H, 2.71; N,4.70. Found: C, 44.33; H, 7.76; N, 4.68.
Crystal Structure Determinations
X-ray data were collected on a Bruker SMART automatic diffractometer with a graphite-monochromated Mo Kα (λ=0.71073 Å) and a CCD detector at ambient temperature. Thirty six frames of two dimensional diffraction images were collected and processed to obtain the cell parameters and orientation matrix. The data were corrected for Lorentz and polarization effects. Absorption effects were corrected by the multi-scan method. The structures were solved by the direct method (SHELXS 97) and refined by full-matrix least squares techniques (SHELXL 97).31 The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated positions and refined only for the isotropic thermal factors. Crystallographic data for the structures reported here have been deposited with the Cambridge Crystallographic Data Centre (CCDC-831384 for [Ag2(NO2)2(L)]n, 831385 for [Ag(L)]n(NO3)n, and 831386 for [Ag(L)]n(ClO4)n·nH2O). The data can be obtained free of charge via http://www.ccdc.cam.ac.uk/perl/catreq/catreq.cgi (or from the CCDC, 12 Union Road,Cambridge CB2 1EZ, UK; fax: +44 1233336033; e-mail:deposit@ccdc.cam.ac.uk).
References
- Stang, P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502. https://doi.org/10.1021/ar9602011
- Jones, C. J. Chem. Soc. Rev. 1998, 27, 289. https://doi.org/10.1039/a827289z
- Slone, R. V.; Yoon, D. I.; Calhoun, R. M.; Hupp, J. T. J. Am. Chem. Soc. 1995, 117, 11813. https://doi.org/10.1021/ja00152a027
- Gale, P. A. Coord. Chem. Rev. 2001, 213, 79. https://doi.org/10.1016/S0010-8545(00)00364-7
- Fujita, M. Chem. Soc. Rev. 1998, 27, 417. https://doi.org/10.1039/a827417z
- Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Park, J. K.; Chae, H. K. J. Am. Chem. Soc. 2000, 122, 9921. https://doi.org/10.1021/ja001618b
- Blake, A. J.; Champness, N. R.; Chung, S. S. M.; Li, W.-S.; Schroder, M. Chem. Commun. 1997, 1675.
- Ohba, M.; Fukita, N.; Okawa, H. J. Chem. Soc., Dalton Trans. 1997, 1733.
- Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151. https://doi.org/10.1021/ja00082a055
- Fujita, M.; Kwon, Y. J.; Sasaki, O.; Yamaguchi, K.; Ogura, K. J. Am. Chem. Soc. 1995, 117, 7287. https://doi.org/10.1021/ja00132a046
- Gardner, G. B.; Venkataraman, D.; Moore, J. S.; Lee, S. Nature 1995, 374, 792. https://doi.org/10.1038/374792a0
- MacGillivray, L. R.; Subramanian, S.; Zaworotko, M. J. Chem. Soc. Rev. 1994, 23, 283. https://doi.org/10.1039/cs9942300283
- Batten, S. R.; Jensen, P.; Monbaraki, B.; Murry, K. S.; Robson, R. Chem. Commun. 1998, 439.
- Manson, J. L.; Incarvito, C. D.; Rheingold, A. L.; Miller, J. S. J. Chem. Soc., Dalton Trans. 1998, 3705.
- Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486. https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
- Beer, P. B.; Smith, D. K. Prog. Inorg. Chem. 1997, 46, 1. https://doi.org/10.1002/9780470166475.ch1
- Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609. https://doi.org/10.1021/cr9603845
- Lapointe, R. E.; Roof, G. R.; Abboud, K. A.; Klosin, J. J. Am. Chem. Soc. 2000, 122, 9560. https://doi.org/10.1021/ja002664e
- Mason, S.; Cliford, T.; Seib, L.; Kuczera, K.; Bowman-James, K. J. Am. Chem. Soc. 1998, 120, 8899. https://doi.org/10.1021/ja9811593
- Seppelt, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 1025. https://doi.org/10.1002/anie.199310251
- Brown, R. A.; Pollet, P.; McKoon, E.; Eckert, C. G.; Liotta, C. L.; Jessop, P. G. J. Am. Chem. Soc. 2001, 123, 1254. https://doi.org/10.1021/ja005718t
- Withersby, M. A.; Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W.-S.; Schroder, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2327. https://doi.org/10.1002/anie.199723271
- Wu, H. P.; Janiak, C.; Rheinwald, G.; Lang, H. J. Chem. Soc., Dalton Trans. 1999, 183.
- Janiak, C.; Uehlin, L.; Wu, H.-P.; Klufers, P.; Piotrowski, H.; Scharmann, T. G. J. Chem. Soc., Dalton Trans. 1999, 3121.
- Jung, O.-S.; Kim, Y. J.; Park, J. Y.; Choi, S. N. J. Mol. Struct. 2003, 657, 207. https://doi.org/10.1016/S0022-2860(03)00369-7
- Lee, J. W.; Kim, E. A.; Kim, Y. J.; Lee, Y.-A.; Pak, Y.; Jung, O.-S. Inorg. Chem. 2005, 44, 3151. https://doi.org/10.1021/ic048537r
- Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Yoo, K. H. Chem. Lett. 2002, 500.
- Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Park, K.-M.; Lee, S. S. Inorg. Chem. 2003, 42, 844. https://doi.org/10.1021/ic025935q
- Huheey, J. E. Inorganic Chemistry, Principles of Structure and Reactivity, 2nd ed.; Harper & Row: New York, 1978; p 230.
- Lee, Y.-A.; Jung, O.-S. Angew. Chem., Int. Ed. 2001, 40, 3868. https://doi.org/10.1002/1521-3773(20011015)40:20<3868::AID-ANIE3868>3.0.CO;2-O
- Sheldrick, G. M. SHELXS-97: A Program for Structure Determination; University of Gottingen: Germany, 1997.
- Sheldrick, G. M. SHELXL-97: A Program for Structure Refinement; University of Gottingen: Germany, 1997.
Cited by
- ) vol.74, pp.8, 2018, https://doi.org/10.1107/S2053229618009257