DOI QR코드

DOI QR Code

Synthesis of well-aligned thin multiwalled carbon nanotubes on the silicon substrate and their field emission properties

  • Yuan, Huajun (School of Electrical Engineering, Korea University) ;
  • Shin, Dong-Hoon (School of Electrical Engineering, Korea University) ;
  • Kim, Bawl (School of Electrical Engineering, Korea University) ;
  • Lee, Cheol-Jin (School of Electrical Engineering, Korea University)
  • Received : 2011.09.20
  • Accepted : 2011.11.26
  • Published : 2011.12.30

Abstract

Well-aligned multi-walled carbon nanotubes (MWCNTs) were successfully synthesized by catalytic chemical vapor deposition using a hydrogen sulfide ($H_2S$) additive onto Al/Fe thin film deposited on Si wafers. Transmission electron microscopy images indicated that the as-grown carbon products were thin MWCNTs with small outer diameters of less than 10 nm. $H_2S$ plays a key role in synthesizing thin MWCNTs with a large inside hollow core. The well-aligned thin MWCNTs showed a low turn-on voltage of about 1.1 V/${\mu}m$ at a current density of 0.1 ${\mu}A/cm^2$ and a high emission current of about 1.0 mA/$cm^2$ at a bias field of 2.3 V/${\mu}m$. We suggest a possible growth mechanism for the well-aligned thin MWCNTs with a large inside hollow core.

Keywords

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.
  2. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605 (1993). http://dx.doi.org/10.1038/363605a0.
  3. Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Deniard P, Lee R, Fischer JE. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388, 756 (1997). http://dx.doi.org/10.1038/41972.
  4. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483.
  5. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G. Large-scale synthesis of aligned carbon nanotubes. Science, 274, 1701 (1996). http://dx.doi.org/10.1126/science.274.5293.1701.
  6. Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512 (1999). http://dx.doi.org/10.1126/science.283.5401.512.
  7. Lee CJ, Kim DW, Lee TJ, Choi YC, Park YS, Lee YH, Choi WB, Lee NS, Park GS, Kim JM. Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett, 312, 461 (1999). http://dx.doi.org/10.1016/S0009-2614(99)01074-X.
  8. Lee CJ, Park J. Growth model for bamboolike structured carbon nanotubes synthesized using thermal chemical vapor deposition. J Phys Chem B, 105, 2365 (2001). http://dx.doi.org/10.1021/jp0032762.
  9. Rohmund F, Falk LKL, Campbell EEB. A simple method for the production of large arrays of aligned carbon nanotubes. Chem Phys Lett, 328, 369 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00996-9.
  10. Lee CJ, Lyu SC, Kim HW, Park CY, Yang CW. Large-scale production of aligned carbon nanotubes by the vapor phase growth method. Chem Phys Lett, 359, 109 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00648-6.
  11. Ren ZF, Huang ZP. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282, 1105 (1998). http://dx.doi.org/10.1126/science.282.5391.1105.
  12. Merkulov VI, Guillorn MA, Lowndes DH, Simpson ML, Voelkl E. Shaping carbon nanostructures by controlling the synthesis process. Appl Phys Lett, 79, 1178 (2001). http://dx.doi.org/10.1063/1.1395517.
  13. Merkulov VI, Melechko AV, Guillorn MA, Lowndes DH, Simpson ML. Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl Phys Lett, 79, 2970 (2001). http://dx.doi.org/10.1063/1.1415411.
  14. Koehne J, Chen H, Li J, Cassell AM, Ye Q, Ng HT, Han J, Meyyappan M. Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology, 14, 1239 (2003). http://dx.doi.org/10.1088/0957-4484/14/12/001.
  15. Mayne M, Grobert N, Terrones M, Kamalakaran R, Ruhle M, Kroto HW, Walton DRM. Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem Phys Lett, 338, 101 (2001). http://dx.doi.org/10.1016/s0009-2614(01)00278-0.
  16. Lee CJ, Son KH, Park J, Yoo JE, Huh Y, Lee JY. Low temperature growth of vertically aligned carbon nanotubes by thermal chemical vapor deposition. Chem Phys Lett, 338, 113 (2001). http://dx.doi.org/10.1016/s0009-2614(00)01378-6.
  17. Lee CJ, Park J, Kang SY, Lee JH. Growth and field electron emission of vertically aligned multiwalled carbon nanotubes. Chem Phys Lett, 326, 175 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00751-X.
  18. Liu BC, Lee TJ, Lee SH, Park CY, Lee CJ. Large-scale synthesis of high-purity well-aligned carbon nanotubes using pyrolysis of iron(II) phthalocyanine and acetylene. Chem Phys Lett, 377, 55 (2003). http://dx.doi.org/10.1016/s0009-2614(03)01092-3.
  19. Lee YT, Park J, Choi YS, Ryu H, Lee HJ. Temperature-dependent growth of vertically aligned carbon nanotubes in the range ${800-1100^{\circ}C}$. J Phys Chem B, 106, 7614 (2002). http://dx.doi. org/10.1021/jp020488l.
  20. Ci L, Rao Z, Zhou Z, Tang D, Yan X, Liang Y, Liu D, Yuan H, Zhou W, Wang G, Liu W, Xie S. Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem Phys Lett, 359, 63 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00600-0.
  21. Song L, Ci L, Lv L, Zhou Z, Yan X, Liu D, Yuan H, Gao Y, Wang J, Liu L, Zhao X, Zhang Z, Dou X, Zhou W, Wang G, Wang C, Xie S. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv Mater, 16, 1529 (2004). http://dx.doi.org/10.1002/adma.200306393.
  22. Saito Y, Nakahira T, Uemura S. Growth conditions of doublewalled carbon nanotubes in arc discharge. J Phys Chem B, 107, 931 (2003). http://dx.doi.org/10.1021/jp021367o.
  23. Ago H, Komatsu T, Ohshima S, Kuriki Y, Yumura M. Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl Phys Lett, 77, 79 (2000). http://dx.doi.org/10.1063/1.126883.
  24. Murakami Y, Chiashi S, Miyauchi Y, Hu M, Ogura M, Okubo T, Maruyama S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett, 385, 298 (2004). http://dx.doi.org/10.1016/j.cplett.2003.12.095.
  25. Maruyama S, Einarsson E, Murakami Y, Edamura T. Growth process of vertically aligned single-walled carbon nanotubes. Chem Phys Lett, 403, 320 (2005). http://dx.doi.org/10.1016/j.cplett.2005.01.031.
  26. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free singlewalled carbon nanotubes. Science, 306, 1362 (2004). http://dx.doi.org/10.1126/science.1104962.
  27. Tibbetts GG, Bernardo CA, Gorkiewicz DW, Alig RL. Role of sulfur in the production of carbon fibers in the vapor phase. Carbon, 32, 569 (1994). http://dx.doi.org/10.1016/0008-6223(94)90074-4.
  28. Kim MS, Rodriguez NM, Baker RTK. The interplay between sulfur adsorption and carbon deposition on cobalt catalysts. J Catal, 143, 449 (1993). http://dx.doi.org/10.1006/jcat.1993.1289.
  29. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature, 386, 377 (1997). http://dx.doi.org/10.1038/386377a0.
  30. Meyer RR, Sloan J, Dunin-Borkowski RE, Kirkland AI, Novotny MC, Bailey SR, Hutchison JL, Green MLH. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science, 289, 1324 (2000). http://dx.doi.org/10.1126/science.289.5483.1324.