DOI QR코드

DOI QR Code

Effect of few-walled carbon nanotube crystallinity on electron field emission property

  • Jeong, Hae-Deuk (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jong-Hyeok (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Byung-Gap (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Jeong, Hee-Jin (Nano Carbon Materials Research Group, Korea Electrotechnology Research Institute) ;
  • Lee, Geon-Woong (Nano Carbon Materials Research Group, Korea Electrotechnology Research Institute) ;
  • Bang, Dae-Suk (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Dong-Hwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Park, Young-Bin (School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology) ;
  • Jhee, Kwang-Hwan (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • Received : 2011.09.01
  • Accepted : 2011.10.15
  • Published : 2011.12.30

Abstract

We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.

Keywords

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.
  2. Chernozatonskii LA, Gulyaev YV, Kosakovskaja ZJ, Sinitsyn NI, Torgashov GV, Zakharchenko YF, Fedorov EA, Val'chuk VP. Electron field emission from nanofilament carbon films. Chem Phys Lett, 233, 63 (1995). http://dx.doi.org/10.1016/0009-2614(94)01418-U.
  3. Wang QH, Setlur AA, Lauerhaas JM, Dai JY, Seelig EW, Chang RPH. A nanotube-based field-emission flat panel display. Appl Phys Lett, 72, 2912 (1998). http://dx.doi.org/10.1063/1.121493.
  4. Sohn JI, Lee S, Song YH, Choi SY, Cho KI, Nam KS. Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays. Appl Phys Lett, 78, 901 (2001). http://dx.doi.org/10.1063/1.1335846.
  5. Sugie H, Tanemura M, Filip V, Iwata K, Takahashi K, Okuyama F. Carbon nanotubes as electron source in an x-ray tube. Appl Phys Lett, 78, 2578 (2001). http://dx.doi.org/10.1063/1.1367278.
  6. Yue GZ, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu JP, Zhou O. Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based fieldemission cathode. Appl Phys Lett, 81, 355 (2002). http://dx.doi.org/10.1063/1.1492305.
  7. Bonard JM, Salvetat JP, Stockli T, Forro L, Chatelain A. Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl Phys A: Mater Sci Process, 69, 245 (1999). http://dx.doi.org/10.1007/s003390050998.
  8. De Jonge N. Brightness of carbon nanotube electron sources. J Appl Phys, 95, 673 (2004). http://dx.doi.org/10.1063/1.1632551.
  9. Utsumi T. Vacuum microelectronics: what's new and exciting. IEEE Trans Electron Devices, 38, 2276 (1991). http://dx.doi.org/10.1109/16.88510.
  10. Wei Y, Xie C, Dean KA, Coll BF. Stability of carbon nanotubes under electric field studied by scanning electron microscopy. Appl Phys Lett, 79, 4527 (2001). http://dx.doi.org/10.1063/1.1429300.
  11. Purcell ST, Vincent P, Journet C, Binh VT. Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current. Phys Rev Lett, 88, 105502 (2002). http://dx.doi.org/10.1103/PhysRevLett.88.105502.
  12. Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jung JE, Lee NS, Park GS, Kim JM. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett, 75, 3129 (1999). http://dx.doi.org/10.1063/1.125253.
  13. Uemura S, Yotani J, Nagasako T, Kurachi H, Yamada H, Ezaki T, Maesoba T, Nakao T, Saito Y, Yumura M. 39.4: large size FED with carbon nanotube emitter. SID Symposium Digest of Technical Papers, 33, 1132 (2002). http://dx.doi.org/10.1889/1.1830144.
  14. Saito Y, Nakahira T, Uemura S. Growth conditions of doublewalled carbon nanotubes in arc discharge. J Phys Chem B, 107, 931 (2003). http://dx.doi.org/10.1021/jp021367o.
  15. Jeong HJ, Kim KK, Jeong SY, Park MH, Yang CW, Lee YH. Highyield catalytic synthesis of thin multiwalled carbon nanotubes. J Phys Chem B, 108, 17695 (2004). http://dx.doi.org/10.1021/jp046152o.
  16. Jeong HJ, Choi HK, Kim GY, Song YI, Tong Y, Lim SC, Lee YH. Fabrication of efficient field emitters with thin multiwalled carbon nanotubes using spray method. Carbon, 44, 2689 (2006). http://dx.doi.org/10.1016/j.carbon.2006.04.009.
  17. Ham HT, Choi YS, Chung IJ. An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interface Sci, 286, 216 (2005). http://dx.doi.org/10.1016/j.jcis.2005.01.002.
  18. Hesse R, Streubel P, Szargan R. Improved accuracy of quantitative XPS analysis using predetermined spectrometer transmission functions with UNIFIT 2004. Surf Interface Anal, 37, 589 (2005). http://dx.doi.org/10.1002/sia.2056.
  19. Chen L, Pang XJ, Qu MZ, Zhang Qt, Wang B, Zhang BL, Yu ZL. Fabrication and characterization of polycarbonate/carbon nanotubes composites. Composites Part A: Appl Sci Manuf, 37, 1485 (2006). http://dx.doi.org/10.1016/j.compositesa.2005.08.009.
  20. Kim UJ, Furtado CA, Liu X, Chen G, Eklund PC. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc, 127, 15437 (2005). http://dx.doi.org/10.1021/ja052951o.
  21. Sandler J, Shaffer MSP, Windle AH, Halsall MP, Montes-Moran MA, Cooper CA, Young RJ. Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: a simple geometric effect. Phys Rev B, 67, 35417 (2003). http://dx.doi.org/10.1103/PhysRevB.67.035417.
  22. Yu J, Grossiord N, Koning CE, Loos J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon, 45, 618 (2007). http://dx.doi.org/10.1016/j.carbon.2006.10.010.
  23. Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW, Rao AM, Sun YP. Attaching proteins to carbon nanotubes via diimideactivated amidation. Nano Lett, 2, 311 (2002). http://dx.doi.org/10.1021/nl010095i.
  24. Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M. Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B, 104, 8911 (2000). http://dx.doi.org/10.1021/jp002555m.
  25. Graybeal JD. Molecular Spectroscopy, McGraw-Hill, New York (1988).
  26. Solymar L, Walsh D. Electrical Properties of Materials. 6th ed., Oxford University Press, Oxford (1998).
  27. Fursey G. Field Emission in Vacuum Microelectronics, Kluwer Academic/Plenum Publishers, New York (2005).
  28. Fursey GN, Glazanov DV. Deviations from the Fowler-Nordheim theory and peculiarities of field electron emission from smallscale objects. J Vac Sci Technol B, 16, 910 (1998). http://dx.doi.org/10.1116/1.589929.
  29. Bonard JM, Salvetat JP, Stockli T, De Heer WA, Forro L, Chatelain A. Field emission from single-wall carbon nanotube films. Appl Phys Lett, 73, 918 (1998). http://dx.doi.org/10.1063/1.122037.
  30. Rajalakshmi N, Dhathathreyan KS, Govindaraj A, Satishkumar BC. Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage. Electrochim Acta, 45, 4511 (2000). http://dx.doi.org/10.1016/s0013-4686(00)00510-7.
  31. Kung SC, Hwang KC, Lin IN. Oxygen and ozone oxidation-enhanced field emission of carbon nanotubes. Appl Phys Lett, 80, 4819 (2002). http://dx.doi.org/10.1063/1.1485315.
  32. im SC, Choi YC, Jeong HJ, Shin YM, An KH, Bae DJ, Lee YH, Lee NS, Kim JM. Effect of gas exposure on field emission properties of carbon nanotubes arrays. Adv Mater, 13, 1563 (2001). http://dx.doi.org/10.1002/1521-4095(200110)13:20<1563::aidadma1563>3.0.co;2-h.

Cited by

  1. Carbon Nanotube Reinforced CdSe Inverse Opal with Crack-Free Structure and High Conductivity for Photovoltaic Applications vol.2, pp.2, 2014, https://doi.org/10.1002/admi.201400464
  2. layers on silver nano-tips as electron emitters vol.109, pp.13, 2016, https://doi.org/10.1063/1.4963260