DOI QR코드

DOI QR Code

Tobacco mitochondrial small heat shock protein NtHSP24.6 adopts a dimeric configuration and has a broad range of substrates

  • Kim, Keun-Pill (School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Yu, Ji-Hee (School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Park, Soo-Min (School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Koo, Hyun-Jo (School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Hong, Choo-Bong (School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University)
  • Received : 2011.07.28
  • Accepted : 2011.09.14
  • Published : 2011.12.31

Abstract

There is a broad range of different small heat shock proteins (sHSPs) that have diverse structural and functional characteristics. To better understand the functional role of mitochondrial sHSP, NtHSP24.6 was expressed in Escherichia coli with a hexahistidine tag and purified. The protein was analyzed by non-denaturing PAGE, chemical cross-linking and size exclusion chromatography and the $H_6NtHSP24.6$ protein was found to form a dimer in solution. The in vitro functional analysis of $H_6NtHSP24.6$ using firefly luciferase and citrate synthase demonstrated that this protein displays typical molecular chaperone activity. When cell lysates of E. coli were heated after the addition of $H_6NtHSP24.6$, a broad range of proteins from 10 to 160 kD in size remained in the soluble state. These results suggest that NtHSP24.6 forms a dimer and can function as a molecular chaperone to protect a diverse range of proteins from thermal aggregation.

Keywords

References

  1. MacRae, T. H. (2000) Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas. Cell. Mol. Life Sci. 57, 899-913. https://doi.org/10.1007/PL00000733
  2. Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M. and Buchner, J. (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J. 24, 3633-3642. https://doi.org/10.1096/fj.10-156992
  3. van Montfort, R. L. M., Slingsby, C. and Vierling, E. (2002) Structure and function of the small heat shock $protein/{\alpha}-crystallin$ family of molecular chaperones. Adv. Prot. Chem. 59, 105-156.
  4. Nakamoto, H. and Vigh, L. (2007) The small heat shock proteins and their clients. Cell. Mol. Life Sci. 64, 294-306. https://doi.org/10.1007/s00018-006-6321-2
  5. Basha, E., Lee, G. J., Breci, L. A., Hausrath, A. C., Buan, N. R., Giese, K. C. and Vierling, E. (2004) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279, 7566-7575. https://doi.org/10.1074/jbc.M310684200
  6. Maxwell, D. P., Nickels, R. and McIntosh, L. (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J. 29, 269-279. https://doi.org/10.1046/j.1365-313X.2002.01216.x
  7. Rikhvanov, E. G., Gamburg, K. Z., Varakina, N. N., Rusaleva, T. M., Fedoseeva, I. V., Tauson, E. L., Stupnikova, I. V., Stepanov, A. V., Borovskii, G. B. and Voinikov, V. K. (2007) Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture. Plant J. 52, 763-778. https://doi.org/10.1111/j.1365-313X.2007.03275.x
  8. Chen, X., Wang, Y., Li, J., Jiang, A., Cheng, Y. and Zhang, W. (2009) Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiol. Biochem. 47, 407-415. https://doi.org/10.1016/j.plaphy.2008.12.021
  9. Chou, M., Chen, Y. M., Lin, Y. M. and Lin, C. Y. (1989) Thermotolerance of isolated mitochondria associated with heat shock proteins. Plant Physiol. 98, 167-621.
  10. Downs, C. A. and Heckathorn, S. A. (1998) The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett. 430, 246-250. https://doi.org/10.1016/S0014-5793(98)00669-3
  11. Koo, H. J., Xia, X. and Hong, C. B. (2003) Genes and Expression pattern of tobacco mitochondrial small heat shock protein under high-temperature stress. J. Plant Biol. 46, 204-210.
  12. Claros, M. G. and Vincens, P. (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779-786. https://doi.org/10.1111/j.1432-1033.1996.00779.x
  13. Kim, K. P., Joe, M. K. and Hong, C. B. (2004) Tobacco small heat-shock protein, NtHSP18.2, has broad substrate range as a molecular chaperone. Plant Sci. 167, 1017-1025. https://doi.org/10.1016/j.plantsci.2004.05.043
  14. Lenne, C., Block, M. A., Garin, J. and Douce, R. (1995) Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem. J. 311, 805-813. https://doi.org/10.1042/bj3110805
  15. Eyles, S. and Gierasch, L. (2010) Nature's molecular sponges: Small heat shock proteins grow into their chaperone roles. Proc. Natl. Acad. Sci. U.S.A. 107, 2727-2728. https://doi.org/10.1073/pnas.0915160107
  16. Bartoli, C. G., Gomez, F., Martinez, D. E. and Guiamet, J. J. (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J. Exp. Bot. 55, 1663-1669. https://doi.org/10.1093/jxb/erh199
  17. Gechev, T. S., van Breusegem, F., Stone, J. M., Denev, I. and Laloi, C. (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioassays 28, 1091-1101. https://doi.org/10.1002/bies.20493
  18. Giraud, E., Ho, L. H., Clifton, R., Carroll, A., Estavillo, G., Tan, Y. F., Howell, K. A., Ivanova, A., Pogson, B. J., Millar, A. H. and Whelan, J. (2008) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 147, 595-610. https://doi.org/10.1104/pp.107.115121
  19. Kim, R., Kim, K. K., Yokota, H. and Kim, S. H. (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. U.S.A. 95, 9129-9133. https://doi.org/10.1073/pnas.95.16.9129
  20. Stamler, R., Kappe, G., Boelens, W. and Slingsby, C. (2005) Wrapping the [alpha]-crystallin domain fold in a chaperone assembly. J. Mol. Biol. 353, 68-79. https://doi.org/10.1016/j.jmb.2005.08.025
  21. van Montfort, R. L. M., Basha, E., Friedrich, K. L., Slingsby, C. and Vierling, E. (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8, 1025-1030. https://doi.org/10.1038/nsb722
  22. Joe, M. K., Park, S. M., Lee, Y. S., Hwang, D. S. and Hong, C. B. (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol. Cells 10, 519-524. https://doi.org/10.1007/s10059-000-0519-1
  23. Sambrook, J., Fristsch, E. F. and Maniatis, T. (1989) Molecular cloning; A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  24. Anderson, L. O., Borg, H. and Mikaelesson, M. (1972) Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett. 20, 199-202. https://doi.org/10.1016/0014-5793(72)80793-2

Cited by

  1. It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate vol.293, pp.51, 2018, https://doi.org/10.1074/jbc.RA118.005421