DOI QR코드

DOI QR Code

The Dumb-bell Shaped Magnetostrictive/Piezoelectric Transducer

  • Li, Jianzhong (The Key Laboratory for Optoelectronic Technology and Systems, Ministry of Education and the College of Optoelectronic Engineering, Chongqing University) ;
  • Wen, Yumei (The Key Laboratory for Optoelectronic Technology and Systems, Ministry of Education and the College of Optoelectronic Engineering, Chongqing University) ;
  • Li, Ping (The Key Laboratory for Optoelectronic Technology and Systems, Ministry of Education and the College of Optoelectronic Engineering, Chongqing University)
  • 투고 : 2011.10.15
  • 심사 : 2011.11.09
  • 발행 : 2011.12.31

초록

Traditional magnetostrictive/piezoelectric laminate composites are generally in the regular geometries such as rectangles or disks. To explore properties of the irregular geometry magnetostrictive/piezoelectric transducer in the fundamental resonant frequency, a step dumb-bell shaped Magnetoelectric (ME) transducer is presented in this study. Both analytical and experimental investigations are carried out for the dumb-bell shaped transducer in the fundamental frequency. Comparing with the traditional rectangular transducer, the theory shows the resonant frequency of dumb-bell shaped transducer is reduced 31%, and the experiment gives the result of that is 37% which is independent of dc magnetic fields. The ratio of magnetoelectric voltage coefficient (MEVC) between the dumb-bell shaped and rectangular shaped transducers in theory is 66% comparing with that of in experiment is varying from 140% to 33% when the dc field is increased from 0 Oe to 118 Oe.

키워드

참고문헌

  1. J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, Jpn. J. Appl. Phys. Part 1 40, 4948 (2001). https://doi.org/10.1143/JJAP.40.4948
  2. C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 35 (2008).
  3. M. I. Bichurin, D. A. Filippov, V. M. Petrov, V. M. Laletsin, N. Paddubnaya, and G. Srinivasan, Phys. Rev. B 68, 4 (2003).
  4. S. X. Dong, J. R. Cheng, J. F. Li, and D. Viehland, Appl. Phys. Lett. 83, 4812 (2003). https://doi.org/10.1063/1.1631756
  5. J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J. M. Liu, Appl. Phys. Lett. 86, 3 (2005).
  6. J. Y. Zhai, Z. P. Xing, S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 93, 3 (2008).
  7. M. S. Guo and S. X. Dong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 480 (2010). https://doi.org/10.1109/TUFFC.2010.1428
  8. L. X. Bian, Y. M. Wen, P. Li, Q. L. Gao, Y. Zhu, and M. Yu, IEEE Sens. J. 9, 1620 (2009). https://doi.org/10.1109/JSEN.2009.2026526
  9. J. Y. Zhai, S. X. Dong, Z. P. Xing, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 3 (2006).
  10. X. W. Dong, B. Wang, K. F. Wang, J. G. Wan, and J. M. Liu, Sens. Actuator A-Phys. 153, 64 (2009). https://doi.org/10.1016/j.sna.2009.04.033
  11. G. Srinivasan, A. S. Tatarenko, and M. I. Bichurin, Electron. Lett. 41, 596 (2005). https://doi.org/10.1049/el:20050925
  12. C. H. Yang, Y. M. Wen, P. Li, and L. X. Bian, Acta Phys. Sin. 57, 7292 (2008).
  13. S. Dong, J. Zhai, F. Bai, J. F. Li, and D. Viehland, Appl. Phys. Lett. 87, 3 (2005).
  14. R. Kellogg and A. Flatau, J. Intell. Mater. Syst. Struct. 19, 583 (2008). https://doi.org/10.1177/1045389X07077854
  15. L. X. Bian, Y. M. Wen, P. Li, Q. L. Gao, and X. X. Liu, J. Magnetics 14, 66 (2009). https://doi.org/10.4283/JMAG.2009.14.2.066
  16. D. A. Pan, S. G. Zhang, A. A. Volinsky, and L. J. Qiao, J. Phys. D-Appl. Phys. 41, 5 (2008).
  17. P. Bajons and W. Kromp, Ultrasonics 16, 213 (1978). https://doi.org/10.1016/0041-624X(78)90019-7