DOI QR코드

DOI QR Code

Effect of Interface Roughness on Exchange Bias of an Uncompensated Interface: Monte Carlo Simulation

  • Li, Ying (Department of Materials Science and Engineering, Korea University) ;
  • Moon, Jung-Hwan (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Kyung-Jin (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2011.08.21
  • 심사 : 2011.09.15
  • 발행 : 2011.12.31

초록

By means of Monte Carlo simulation, we investigate the effects of interface roughness and temperature on the exchange bias and coercivity in ferromagnetic (FM)/antiferromagnetic (AFM) bilayers. Both exchange bias and coercivity are strongly dependent on interface roughness. For a perfect uncompensated interface a domain wall is formed in the AFM system during FM reversal, which results in a very small exchange bias. However, a finite interface roughness leads to a finite value of the exchange bias due to the existence of pinned spins at the AFM surface adjacent to the mixed interface. It is observed that the exchange bias decreases with increasing temperature, consistent with the experimental results. It is also observed that a bump in coercivity occurs around the blocking temperature.

키워드

참고문헌

  1. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956) https://doi.org/10.1103/PhysRev.102.1413
  2. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 104, 904 (1957).
  3. W. H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962). https://doi.org/10.1063/1.1728716
  4. R. L. Stamps, J. Phys. D: Appl. Phys. 33, R247 (2000). https://doi.org/10.1088/0022-3727/33/23/201
  5. J. Nogues et al., Phys. Report. 422, 65 (2005). https://doi.org/10.1016/j.physrep.2005.08.004
  6. M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001). https://doi.org/10.1016/S0304-8853(01)00421-8
  7. A. Deac et al., J. Magn. Magn. Mater. 290-291, 42 (2005). https://doi.org/10.1016/j.jmmm.2004.11.157
  8. K. J. Lee et al., J. Appl. Phys. 95, 7423 (2004). https://doi.org/10.1063/1.1682872
  9. S.-C. Oh et al., Nature Phys. 5, 898 (2009). https://doi.org/10.1038/nphys1427
  10. J. H. Moon, W. J. Kim, T. D. Lee, and K.-J. Lee, Phys. Stat. Sol. (b) 244, 4491 (2007). https://doi.org/10.1002/pssb.200777157
  11. S.-K. Kim et al., Appl. Phys. Lett. 86, 052504 (2005). https://doi.org/10.1063/1.1855413
  12. A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987) https://doi.org/10.1103/PhysRevB.35.3679
  13. A. P. Malozemoff, Phys. Rev. B 37, 7673 (1988). https://doi.org/10.1103/PhysRevB.37.7673
  14. P. Miltenyi et al., Phys. Rev. Lett. 84, 4224 (2000). https://doi.org/10.1103/PhysRevLett.84.4224
  15. U. Nowak et al., Phys. Rev. B 66, 014430 (2002). https://doi.org/10.1103/PhysRevB.66.014430
  16. J. Spray and U. Nowak, J. Phys. D: Appl. Phys. 39, 4536 (2006). https://doi.org/10.1088/0022-3727/39/21/003
  17. L. Wee, R. L. Stamps, L. Malkinski, and Z. Celinski, Phys. Rev. B 69, 134426 (2004). https://doi.org/10.1103/PhysRevB.69.134426
  18. J. Nogue, T. J. Moran, D. Lederman, and Ivan K. Schuller, Phys. Rev. B 59, 6984 (1999). https://doi.org/10.1103/PhysRevB.59.6984
  19. J. W. Stout and S. A. Reed, J. Am. Chem. Soc. 76, 5279 (1954). https://doi.org/10.1021/ja01650a005
  20. M. Kiwi, J. Mejia-Lopez, R. D. Portugal, and R. Ramirez, Europhys. Lett. 48, 573 (1999). https://doi.org/10.1209/epl/i1999-00522-9
  21. A. S. Carrico, R. E. Camley, and R. L. Stamps, Phys. Rev. B 50, 13453 (1994). https://doi.org/10.1103/PhysRevB.50.13453
  22. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford pp. 46-53 (1999).
  23. B. Beckmann, U. Nowak, and K. D. Usadel, Phys. Rev. Lett. 91, 187201 (2003). https://doi.org/10.1103/PhysRevLett.91.187201
  24. H. Fujiwara et al., J. Appl. Phys. 79, 6286 (1996). https://doi.org/10.1063/1.362039
  25. C. Hou, H. Fujiwara, K. Zhang, A. Tanaka, and Y. Shimizu, Phys. Rev. B 63, 024411 (2000). https://doi.org/10.1103/PhysRevB.63.024411
  26. T. J. Moran, J. Nogues, D. Lederman, and Ivan K. Schuller, Appl. Phys. Lett. 72, 617 (1998). https://doi.org/10.1063/1.120823
  27. H. Ohldag, H. T. Shi, E. Arenholz, J. Stohr, and D. Lederman, Phys. Rev. Lett. 96, 027203 (2006). https://doi.org/10.1103/PhysRevLett.96.027203
  28. D. M. Engebretson, W. A. A. Macedo, Ivan K. Schuller, P. A. Crowell, and C. Leighton, Phys. Rev. B 71, 184412 (2005). https://doi.org/10.1103/PhysRevB.71.184412
  29. T. Hauet, J. A. Borchers, Ph. Mangin, Y. Henry, and S. Mangin, Phys. Rev. Lett. 96, 067207 (2006). https://doi.org/10.1103/PhysRevLett.96.067207