DOI QR코드

DOI QR Code

A Stress-Strain Relationship of Alkali-Activated Slag Concrete

알칼리활성 슬래그 콘크리트의 응력-변형률 관계

  • Yang, Keun-Hyeok (Dept. of Architectural Engineering, Kyonggi University) ;
  • Song, Jin-Kyu (Dept. of Architectural Engineering, Chonnam National University) ;
  • Lee, Kyong-Hun (Bio-Housing Research Institute, Chonnam National University)
  • 양근혁 (경기대학교 건축공학과) ;
  • 송진규 (전남대학교 건축공학과) ;
  • 이경훈 (전남대학교 바이오하우징 연구사업단)
  • Received : 2011.07.29
  • Accepted : 2011.09.27
  • Published : 2011.12.31

Abstract

The present study summarizes a series of compressive tests on concrete cylinder in order to examine the stressstrain relationship of alkali-activated (AA) slag concrete. The compressive strength and unit weight of concrete tested ranged from 8.6 MPa to 42.2 MPa and from $2,186kg/m^3$ to $2,343kg/m^3$, respectively. A mathematical equation representing the complete stress-strain curve was developed based on test results recorded from 34 concrete specimens. The modulus of elasticity, strain at peak stress, slopes of ascending and descending branches of stress-strain curves were generalized as a function of compressive strength and unit weight of concrete. The mean and standard deviation of the coefficient of variance between measured and predicted curves were 6.9% and 2.6%, respectively. This indicates that the stress-strain relationship of AA slag concrete is represented properly with more accuracy in the proposed model than in some other available models for ordinary portland cement (OPC) concrete.

이 연구에서는 알칼리활성 슬래그 콘크리트의 응력-변형률 관계를 평가하기 위한 일련의 콘크리트 실린더의 압축 실험을 요약하였다. 실험된 콘크리트의 압축강도는 8.6 MPa에서 42.2 MPa의 범위이며, 단위용적질량은 $2,168kg/m^3$ 에서 $2,343kg/m^3$의 범위이다. 34개의 콘크리트 시험체에서 얻은 결과들에 근거하여 알칼리활성 슬래그 콘크리트의 응력-변형률 모델을 수학적으로 제시하였다. 콘크리트의 탄성계수, 최대응력 시 변형률 및 곡선의 상승부와 하강부의 기울기는 압축강도와 단위용적질량의 함수로 일반화하였다. 각 시험체에서 측정한 값과 제시된 모델의 예측값 사이에서 산정된 변동계수들의 평균과 표준편차는 각각 6.9%와 2.6%이었다. 따라서 제시된 모델은 보통포틀랜드 시멘트 콘크리트에서 제시된 다른 모델들에 비해 AA 슬래그 콘크리트의 응력-변형률 특성을 보다 더 정확하고 합리적으로 나타내었다.

Keywords

References

  1. Shi, C., Krivenko, P. V., and Roy, D., Alkali-Activated Cements and Concretes, Taylor and Francis, 2006, 376 pp.
  2. Pacheco-Torgal, F., Castro-Gomes, J., and Jalali, S., "Alkali-Activated Binders: A Review," Construction and Building Materials, Vol. 22, No. 7, 2008, pp. 1305-1322. https://doi.org/10.1016/j.conbuildmat.2007.10.015
  3. Duxson, P., Fernández-Jimenez, A., Provis, J. L., Lukey, G. C., Palomo, A., and van Deventer, J. S. J., "Geopolymer Technology: The Current State of the Art," Journal of Material Science, Vol. 42, No. 9, 2007, pp. 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  4. Yang, K. H., Sim, J. I., and Nam, S. H., "Enhancement of Reactivity of Calcium Hydroxide-Activated Slag Mortars by the Addition of Barium hydroxide," Construction and Building Materials, Vol. 24, No. 3, 2010, pp. 241-251. https://doi.org/10.1016/j.conbuildmat.2009.09.001
  5. Douglas, E., Bilodeau, A., and Malhotra, V. M., "Properties and Durability of Alkali-Activated Slag Concrete," ACI Materials Journal, Vol. 89, No. 5, 1992, pp. 509-516.
  6. Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., and Ramezanianpour, A. A., "Engineering Properties of Alkali-Activated Natural Pozzolan Concrete," ACI Materials Journal, Vol. 108, No. 1, 2011, pp. 64-72.
  7. Sofi, M., van Deventer, J. S. J., Mendis, P. A., and Lukey, G. G., "Engineering Properties of Inorganic Polymer Concrete," Cement and Concrete Research, Vol. 37, No. 2, 2007, pp. 251-257. https://doi.org/10.1016/j.cemconres.2006.10.008
  8. Wang, P. T., Shah, S. P., and Naaman, A. E., "Stress-Strain Curves of Normal and Lightweight Concrete in Compression," ACI Journal, Vol. 75, No. 6, 1978, pp. 603-611.
  9. Carreira, D. J. and Chu, K. H., "Stress-Strain Relationship for Plain Concrete in Compression," ACI Journal, Vol. 82, No. 6, 1985, pp. 797-804.
  10. Hsu, L. S. and Hsu, C. T. T., "Complete Stress-Strain Behavior of High-Strength Concrete under Compression," Magazine of Concrete Research, Vol. 46, No. 12, 1994, pp. 301-312. https://doi.org/10.1680/macr.1994.46.169.301
  11. Tasnimi, A. A., "Mathematical Model for Complete Stress-Strain Curve Prediction of Normal, Lightweight, and High-Strength Concretes," Magazine of Concrete Research, Vol. 56, No. 1, 2004, pp. 23-34. https://doi.org/10.1680/macr.2004.56.1.23
  12. Comite Euro-International du Beton (CEB-FIP), Structural Concrete: Textbook on Behaviour, Design and Preformance, International Federation for Structural Concrete (Fib), 1999.
  13. European Standard EN 1992-1-1:2004, Eurocode 2: Design of Concrete Structures, British Standards Institution, 2004.
  14. Yang, K. H., Cho, A. R., Song, J. K., and Nam, S. H., "Hydration Products and Strength Development of Calcium Hydroxide-Based Alkai-Activated Slag Mortars," Construction and Building Materials, Vol. 29, 2012, pp. 410-419. https://doi.org/10.1016/j.conbuildmat.2011.10.063
  15. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), American Concrete Institute, Farmington Hills, 2005, 473 pp.
  16. Noguchi, T., Tomosawa, F., Nemati, K. M., Chiaia, B. M., and Fantilli, A. P., "A Practical Equation for Elasticity Modulus of Concrete," ACI Structural Journal, Vol. 106, No. 5, 2009, pp. 690-696.

Cited by

  1. Optimum Mix Proportion and Mechanical Properties of Rain Garden Structure Concrete using Recycled Coarse Aggregate, Hwang-Toh, Blast Furnace Slag and Jute Fiber vol.55, pp.3, 2013, https://doi.org/10.5389/KSAE.2013.55.3.025
  2. The Fundamental Study of Strength and Drying Shrinkage on Alkali-activated Slag Cement Mortar with Different Entering Point of Fine Aggregate vol.18, pp.2, 2014, https://doi.org/10.11112/jksmi.2014.18.2.117
  3. Performance Evaluation of Natural Jute Fiber Reinforced Recycled Coarse Aggregate Concrete Using Response Surface Method vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.021
  4. Physical, Mechanical Properties and Freezing and Thawing Resistance of Non-Cement Porous Vegetation Concrete Using Non-Sintering Inorganic Binder vol.56, pp.5, 2014, https://doi.org/10.5389/KSAE.2014.56.5.037
  5. Void Ratio, Compressive Strength and Freezing and Thawing Resistance of Natural Jute Fiber Reinforced Non-Sintering Inorganic Binder Porous Concrete vol.57, pp.2, 2015, https://doi.org/10.5389/KSAE.2015.57.2.067
  6. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex vol.8, pp.4, 2016, https://doi.org/10.3390/su8040386