DOI QR코드

DOI QR Code

하중조건과 고온에 의한 고강도 경량 콘크리트의 역학적 특성 평가

Evaluation on Mechanical Properties of High Strength Light-Weight Concrete with Elevated Temperature and loading

  • Kim, Gyu-Yong (Dept. of Architectural Engineering, Chungnam National University) ;
  • Kim, Young-Sun (Dept. of Architectural Engineering, Chungnam National University) ;
  • Choe, Gyeong-Cheol (Dept. of Architectural Engineering, Chungnam National University) ;
  • Park, Hyun-Gil (Dept. of Architectural Engineering, Chungnam National University) ;
  • Lee, Tae-Gyu (Dept. of Architectural Engineering, Chungnam National University)
  • 투고 : 2011.04.25
  • 심사 : 2011.06.28
  • 발행 : 2011.12.31

초록

콘크리트 중의 골재가 차지하는 비율은 약 70~80 vol%로서 콘크리트의 고온 역학적 성상에 큰 영향요소로 작용할 수 있다. 이 연구는 고온시 콘크리트의 역학적 특성을 평가하기 위한 일환으로써 다양한 환경조건, 즉 고온조건, 하중조건에 따른 역학적 특성을 비교하기 위하여 목표강도 60 MPa급 보통 골재 및 경량 골재 콘크리트를 대상으로 선정하였다. 사용된 시험체는 ${\phi}100{\times}200mm$로서 상온 압축강도의 0%, 20%, 40% 하중을 재하한 상태에서 고온에 따른 강도, 탄성계수, 열팽창 변형(thermal strain), 전체 변형(total strain), 내력저하수축(transient creep) 등 고온에서의 역학적 특성을 평가하였다. 시험 결과 골재의 열팽창계수가 작은 경량 콘크리트는 열팽창 변형이 일반 골재를 사용한 콘크리트에 비하여 전반적으로 작게 나타났으며, 고온조건인 $700^{\circ}C$에서도 압축강도 저하가 상온강도에 대하여 80% 수준으로 나타났다. 또한 재하에 의한 내력저하수축은 $500^{\circ}C$를 기준으로 콘크리트의 변형을 팽창에서 수축으로 전환시키는 영향요인으로써, 콘크리트와 골재의 열팽창 변형비(concrete /aggregate)가 수축의 경향이 큰 경우 콘크리트의 내력저하가 적은 경향을 확인할 수 있었다.

It is very important to experimentally evaluate concrete behavior at elevated temperature because aggregates make up approximately 80 percent of volume in concrete. In this study, an experiment to evaluate mechanical properties of normal weight and light weight concrete of 60 MPa was conducted. Based on loading level of 0, 20 and 40 percent, the tests of 28 days compressive strength, elastic modulus, thermal strain, total strain, and transient creep using ${\phi}100{\times}200mm$ cylindrical specimens at elevated temperature were performed. Then, the results were compared with CEB (Committes Euro-international du Beton) model code. The results showed that thermal strain of light weight concrete was smaller than normal weight concrete. Also, the results showed that compressive strength of light concrete at $700^{\circ}C$ was higher than normal weight concrete and CEB code, similar to that obtained at ambient temperature. Transient creep developed from loading at a critical temperature of $500^{\circ}C$ caused the concrete strains to change from expansion to compression. The transient creep test result showed that internal force was high when the ratio of shrinkage between concrete and aggregate was more influential than thermal expansion.

키워드

참고문헌

  1. Light Concrete LLC, High-Strength Structural Light Weight Concrete, 2003, pp. 8-15.
  2. Abrams, M. S., Compressive Strength of Concrete at Temperatures to 1600F, American Concrete Institute (ACI) SP25, Temperature and Concrete, Detroit, Michigan, 1971, pp. 1-10.
  3. Crozier, D. A. and Sanjayan, J. G., "Tests of Load-Bearing Slender Reinforced Concrete Walls in Fire," ACI Materials Journal, Vol. 97, No. 2, 2000, pp. 243-251.
  4. Kim, .G. Y., Kim, Y. S., and Lee, T. G., "Compressive Strength of Lightweight High-Strength Concrete Subjected to High Temperatures," Tenth ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues, Seville, Spain, 2009, pp. 287-296.
  5. Comites Euro-International Du Beton, Fire Design of Concrete Structures-in accordance with CEB/FIP Model Code 90 (Final Draft), CEB Bulletin D'Information, Lausanne, Switzerland, No. 208, 1991, pp. 33-48.
  6. Comite Europeen de Normalisation (CEN), Eurocode 4: Design of Composite Steel and Concrete Structures, Part 1-2: General Rules-Structural Fire Design, CEN ENV, 1994, pp. 24-25.
  7. Comite Europeen de Normalisation (CEN), prENV 1992-1-2: Eurocode 2: Design of Concrete Structures, Part 1-2: Structural Fire Design, CEN/TC 250/SC 2, 1993, pp. 26-32.
  8. RILEM Technical Committee, "Compressive Strength for Service and Accident Conditions," Materials and Structures, 1995, pp. 410-414.
  9. RILEM Technical Committee, "Recommendation: Part 6-Thermal Strain," Materials and Structures, 1997, pp. 17-21.
  10. RILEM Technical Committee, "Rrecommendation: Part 7-Transient Creep", Materials and Structures, 1998, pp. 290-295.
  11. American Concrete Institute, "State-of-the Art Report on High-Strength Concrete," ACI 363R-92, 1992, pp. 8-12.
  12. Kodur, V. K. R. and Sultan, M. A., "Effect of Temperature on Thermal Properties of High-Strength Concrete," Journal of Materials in Civil Engineering, ASCE, Vol. 15, No. 2, 2003, pp. 101-107. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(101)
  13. Hertz, K. D., "Concrete Strength for Fire Safety Design," Magazine of Concrete Research, Vol. 57, No. 8, 2005, pp. 445-453. https://doi.org/10.1680/macr.2005.57.8.445

피인용 문헌

  1. Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition vol.26, pp.3, 2014, https://doi.org/10.4334/JKCI.2014.26.3.247