DOI QR코드

DOI QR Code

Some Characterization Results Based on Dynamic Survival and Failure Entropies

  • Abbasnejad, Maliheh (Department of Statistics, School of Mathematical Sciences, Ferdowsi University of Mashhad)
  • Received : 20110400
  • Accepted : 20110800
  • Published : 2011.11.30

Abstract

In this paper, we develop some characterization results in terms of survival entropy of the first order statistic. In addition, we generalize the cumulative entropy recently proposed by Di Crescenzo and Logobardi (2009) to a new measure of information (called the failure entropy) and study some properties of it and its dynamic version. Furthermore, power distribution is characterized based on dynamic failure entropy.

Keywords

References

  1. Abbasnejad, M., Arghami, N. R., Morgenthaler, S. and Mohtashami Borzadaran, G. R. (2010). On the dynamic survival entropy, Statistics and Probability Letters, 80, 1962-1971. https://doi.org/10.1016/j.spl.2010.08.026
  2. Abraham, B. and Sankaran, P. G. (2005). Penyi's entropy for residual lifetime distribution, Statistical Paper, 46, 17-30.
  3. Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1992). A First Course in Order Statistics, John Wiley & Sons, New York.
  4. Asadi, M., Ebrahimi, N. and Soofi, E. S. (2005). Dynamic generalized information measures, Statistics and Probability Letters, 71, 85-98. https://doi.org/10.1016/j.spl.2004.10.033
  5. Asadi, M. and Zohrevand, Y. (2007). On the dynamic cumulative residual entropy, Journal of Statistical Planning and Inference, 137, 1931-1941. https://doi.org/10.1016/j.jspi.2006.06.035
  6. Baratpour, S. (2010). Characterization based on cumulative residual entropy of first order ststistics, Communications in Statistics: Theory and Methods, 39, 3645-3651. https://doi.org/10.1080/03610920903324841
  7. Baratpour, S., Ahmadi, J. and Arghami, N. R. (2008). Some characterization based on Renyi entropy of order statistics and record values, Journal of Statistical Planning and Inference, 138, 2544-2551. https://doi.org/10.1016/j.jspi.2007.10.024
  8. David, H. A. and Nagaraja, H. N. (2003). Order Statistics, John Wiley & Sons, New York.
  9. Di Crescenzo, A. and Longobardi, M. (2002). Entropy-based measure of uncertainty in past lifetime distributions, Journal of Applied Probability, 39, 434-440. https://doi.org/10.1239/jap/1025131441
  10. Di Crescenzo, A. and Longobardi, M. (2004). A measure of discrimination between past lifetime distributions, Statistics and Probability Letters, 67, 173-182. https://doi.org/10.1016/j.spl.2003.11.019
  11. Di Crescenzo, A. and Longobardi, M. (2009). On cumulative entropies, Journal of Statistical Planning and Inference, 139, 4072-4087. https://doi.org/10.1016/j.jspi.2009.05.038
  12. Ebrahimi, N. (1996). How to measure uncertainty in the residual lifetime distributions, Sankhya, 58, 48-57.
  13. Gertsbakh, I. and Kagan, A. (1999). Characterization of the Weibull distribution by properties of the Fisher information under type I censoring, Statistics and Probability Letters, 42, 99-105. https://doi.org/10.1016/S0167-7152(98)00212-0
  14. Kamps, U. (1998). Characterizations of distributions by recurrence relations and identities for moments of order statistics, In Order Statistics: Theory and Methods. Handbook of Statistics, Balakrishnan, N., Rao, C. R., Eds. 16, Amesterdam: Elsevier, 291-311.
  15. Nanda, A. K. and Paul, P. (2006). Some properties of past entropy and their applications, Metrika, 64, 47-61. https://doi.org/10.1007/s00184-006-0030-6
  16. Nanda, A. K., Singh, H., Misra, N. and Paul, P. (2003). Reliability properties of reversed residual lifetime, Communications in Statistics: Theory and Methods, 32, 2031-2042. https://doi.org/10.1081/STA-120023264
  17. Rao, M. (2005). More on a new concept of netropy and information, Journal of Theoretical Probability, 18, 967-981. https://doi.org/10.1007/s10959-005-7541-3
  18. Rao, M., Chen, Y., Vemuri, B.C. and Wang, F. (2004). Cumulative residual entropy: A new measure of information, IEEE Transactions on Information Theoty, 50, 1220-1228. https://doi.org/10.1109/TIT.2004.828057
  19. Renyi, A. (1961). On measures of entropy and information, In Proceeding of the Fourth Berkeley Symposium, I, UC Press, Berkeley, 547-561.
  20. Shannon, C. E. (1948). A mathematical theory of communication, Bell System Technology, 27, 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  21. Wang, F. and Vemuri, B. C. (2007). Non-rigid multi-model image registration using cross-cumulative residual entropy, International Journal of Computer Vision, 74, 201-215. https://doi.org/10.1007/s11263-006-0011-2
  22. Zheng, G. (2001). A characterization of the factorization of hazard function by the Fisher information under type II censoring with application to the Weibull family, Statistics and Probability Letters, 52, 249-253. https://doi.org/10.1016/S0167-7152(00)00198-X
  23. Zografos, K. and Nadarajah, S. (2005). Survival exponential entropies, IEEE Transactions on Information Theory, 51, 1239-1246. https://doi.org/10.1109/TIT.2004.842772

Cited by

  1. On generalized dynamic survival and failure entropies of order (α,β) vol.96, 2015, https://doi.org/10.1016/j.spl.2014.09.017
  2. Bivariate Extension of Generalized Cumulative Past Entropy 2017, https://doi.org/10.1080/03610926.2017.1335412
  3. Some Results on Dynamic Generalized Survival Entropy vol.44, pp.8, 2015, https://doi.org/10.1080/03610926.2013.781634
  4. Bivariate extension of (dynamic) cumulative past entropy vol.46, pp.9, 2017, https://doi.org/10.1080/03610926.2015.1080838
  5. A Study on Dynamic Weighted Failure Entropy of Order α vol.36, pp.2, 2017, https://doi.org/10.1080/01966324.2017.1298063
  6. Bivariate Weighted Residual and Past Entropies vol.46, pp.2, 2016, https://doi.org/10.14490/jjss.46.165
  7. Weighted Entropies and Their Estimations 2016, https://doi.org/10.1080/03610918.2016.1140776
  8. pp.2325-8454, 2018, https://doi.org/10.1080/01966324.2018.1483855
  9. Measures of information for maximum ranked set sampling with unequal samples vol.47, pp.19, 2018, https://doi.org/10.1080/03610926.2018.1445857