DOI QR코드

DOI QR Code

SOME LIMIT THEOREMS RELATED TO MULTI-DIMENSIONAL DIFFUSIONS IN A RANDOM ENVIRONMENT

  • Kim, Dae-Hong (DEPARTMENT OF MATHEMATICS AND ENGINEERING FACULTY OF ENGINEERING KUMAMOTO UNIVERSITY)
  • Received : 2009.05.11
  • Accepted : 2009.10.13
  • Published : 2011.01.01

Abstract

In this paper, we consider a multi-dimensional diffusion process in a self-similar random environment and prove a limit theorem for the shape of the full trajectory of the diffusion by using the localization phenomenon.

Keywords

References

  1. T. Brox, A one-dimensional diffusion process in a Wiener medium, Ann. Probab. 14 (1986), no. 4, 1206-1218. https://doi.org/10.1214/aop/1176992363
  2. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994.
  3. M. Fukushima and H. Tanaka, Poisson point processes attached to symmetric diffusions, Ann. Inst. H. Poincare Probab. Statist. 41 (2005), no. 3, 419-459. https://doi.org/10.1016/j.anihpb.2004.10.004
  4. R. A. Holley, S. Kusuoka, and D. W. Stroock, Asymptotics of the spectral gap with applications to the theory of simulated annealing, J. Funct. Anal. 83 (1989), no. 2, 333-347. https://doi.org/10.1016/0022-1236(89)90023-2
  5. K. Kawazu, Y. Tamura, and H. Tanaka, Limit theorems for one-dimensional diffusions and random walks in random environments, Probab. Theory Related Fields 80 (1989), no. 4, 501-541. https://doi.org/10.1007/BF00318905
  6. D. Kim, On spectral gaps and exit time distributions for a non-smooth domain, Forum Math. 18 (2006), no. 4, 571-583. https://doi.org/10.1515/FORUM.2006.029
  7. D. Kim and Y. Oshima, Some inequalities related to transience and recurrence of Markov processes and their applications, J. Theor. Probab. 23 (2010), no. 1, 148-168. https://doi.org/10.1007/s10959-008-0196-0
  8. P. Mathieu, Zero white noise limit through Dirichlet forms, with application to diffusions in a random medium, Probab. Theory Related Fields 99 (1994), no. 4, 549-580. https://doi.org/10.1007/BF01206232
  9. P. Mathieu, Limit theorems for diffusions with a random potential, Stochastic Process. Appl. 60 (1995), no. 1, 103-111. https://doi.org/10.1016/0304-4149(95)00057-7
  10. Y. G. Sinai, The limit behavior of a one-dimensional random walk in a random environment, Teor. Veroyatnost. i Primenen. 27 (1982), no. 2, 247-258.
  11. P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), no. 2, 109-138. https://doi.org/10.1007/BF00396775
  12. H. Takahashi, Recurrence and transience of multi-dimensional diffusion processes in reflected Brownian environments, Statist. Probab. Lett. 69 (2004), no. 2, 171-174. https://doi.org/10.1016/j.spl.2004.06.022
  13. H. Tanaka, Recurrence of a diffusion process in a multidimensional Brownian environment, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 9, 377-381. https://doi.org/10.3792/pjaa.69.377

Cited by

  1. Recurrence of the Brownian Motion in Multidimensional Semi-selfsimilar Environments and Gaussian Environments vol.43, pp.4, 2015, https://doi.org/10.1007/s11118-015-9492-3