References
- T. Brox, A one-dimensional diffusion process in a Wiener medium, Ann. Probab. 14 (1986), no. 4, 1206-1218. https://doi.org/10.1214/aop/1176992363
- M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994.
- M. Fukushima and H. Tanaka, Poisson point processes attached to symmetric diffusions, Ann. Inst. H. Poincare Probab. Statist. 41 (2005), no. 3, 419-459. https://doi.org/10.1016/j.anihpb.2004.10.004
- R. A. Holley, S. Kusuoka, and D. W. Stroock, Asymptotics of the spectral gap with applications to the theory of simulated annealing, J. Funct. Anal. 83 (1989), no. 2, 333-347. https://doi.org/10.1016/0022-1236(89)90023-2
- K. Kawazu, Y. Tamura, and H. Tanaka, Limit theorems for one-dimensional diffusions and random walks in random environments, Probab. Theory Related Fields 80 (1989), no. 4, 501-541. https://doi.org/10.1007/BF00318905
- D. Kim, On spectral gaps and exit time distributions for a non-smooth domain, Forum Math. 18 (2006), no. 4, 571-583. https://doi.org/10.1515/FORUM.2006.029
- D. Kim and Y. Oshima, Some inequalities related to transience and recurrence of Markov processes and their applications, J. Theor. Probab. 23 (2010), no. 1, 148-168. https://doi.org/10.1007/s10959-008-0196-0
- P. Mathieu, Zero white noise limit through Dirichlet forms, with application to diffusions in a random medium, Probab. Theory Related Fields 99 (1994), no. 4, 549-580. https://doi.org/10.1007/BF01206232
- P. Mathieu, Limit theorems for diffusions with a random potential, Stochastic Process. Appl. 60 (1995), no. 1, 103-111. https://doi.org/10.1016/0304-4149(95)00057-7
- Y. G. Sinai, The limit behavior of a one-dimensional random walk in a random environment, Teor. Veroyatnost. i Primenen. 27 (1982), no. 2, 247-258.
- P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), no. 2, 109-138. https://doi.org/10.1007/BF00396775
- H. Takahashi, Recurrence and transience of multi-dimensional diffusion processes in reflected Brownian environments, Statist. Probab. Lett. 69 (2004), no. 2, 171-174. https://doi.org/10.1016/j.spl.2004.06.022
- H. Tanaka, Recurrence of a diffusion process in a multidimensional Brownian environment, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 9, 377-381. https://doi.org/10.3792/pjaa.69.377
Cited by
- Recurrence of the Brownian Motion in Multidimensional Semi-selfsimilar Environments and Gaussian Environments vol.43, pp.4, 2015, https://doi.org/10.1007/s11118-015-9492-3