DOI QR코드

DOI QR Code

Gene Expression Analysis of Gα13-/- Knockout Mouse Embryos Reveals Perturbations in Gα13 Signaling Related to Angiogenesis and Hypoxia

  • Park, Ji-Hwan (Department of Molecular Science and Technology, Ajou University) ;
  • Choi, Sang-Dun (Department of Molecular Science and Technology, Ajou University)
  • Received : 2011.10.10
  • Accepted : 2011.11.30
  • Published : 2011.12.31

Abstract

Angiogenesis is regulated by a large number of molecules and complex signaling mechanisms. The G protein $G{\alpha}_{13}$ is a part of this signaling mechanism as an endothelial cell movement regulator. Gene expression analysis of $G{\alpha}_{13}$ knockout mouse embryos was carried out to identify the role of $G{\alpha}_{13}$ in angiogenesis signaling during embryonic development. Hypoxia-inducible response factors including those acting as regulators of angiogenesis were over expressed, while genes related to the cell cycle, DNA replication, protein modification and cell-cell dissociation were under expressed. Functional annotation and network analysis indicate that $G{\alpha}_{13}{^{-/-}}$ embryonic mice were exposed to hypoxic conditions. The present analysis of the time course highlighted the significantly high levels of disorder in the development of the cardiovascular system. The data suggested that hypoxia-inducible factors including those associated with angiogenesis and abnormalities related to endothelial cell division contributed to the developmental failure of $G{\alpha}_{13}$ knockout mouse embryos.

Keywords

References

  1. Abramovitch, R., Tavor, E., Jacob-Hirsch, J., Zeira, E., Amariglio, N., Pappo, O., Rechavi, G., Galun, E., and Honigman, A. (2004). A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. Cancer Res. 64, 1338-1346. https://doi.org/10.1158/0008-5472.CAN-03-2089
  2. Arato-Ohshima, T. and Sawa, H. (1999). Over-expression of cyclin D1 induces glioma invasion by increasing matrix metalloproteinase activity and cell motility. Int. J. Cancer 83, 387-392. https://doi.org/10.1002/(SICI)1097-0215(19991029)83:3<387::AID-IJC15>3.0.CO;2-O
  3. Armentano, M., Filosa, A., Andolfi, G., and Studer, M. (2006). COUP-TFI is required for the formation of commissural projections in the forebrain by regulating axonal growth. Development 133, 4151-4162. https://doi.org/10.1242/dev.02600
  4. Arnaoutov, A. and Dasso, M. (2003). The Ran GTPase regulates kinetochore function. Dev. Cell. 5, 99-111. https://doi.org/10.1016/S1534-5807(03)00194-1
  5. Berestetskaya, Y.V., Faure, M.P., Ichijo, H., and Voyno- Yasenetskaya, T.A. (1998). Regulation of apoptosis by alpha- subunits of G12 and G13 proteins via apoptosis signal- regulating kinase-1. J. Biol. Chem. 273, 27816-27823. https://doi.org/10.1074/jbc.273.43.27816
  6. Bosco, M.C., Puppo, M., Santangelo, C., Anfosso, L., Pfeffer, U., Fardin, P., Battaglia, F., and Varesio, L. (2006). Hypoxia modifies the transcriptome of primary human monocytes: modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. J. Immunol. 177, 1941-1955. https://doi.org/10.4049/jimmunol.177.3.1941
  7. Buhl, A.M., Johnson, N.L., Dhanasekaran, N., and Johnson, G.L. (1995). G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J. Biol. Chem. 270, 24631-24634. https://doi.org/10.1074/jbc.270.42.24631
  8. Chauvet, C., Bois-Joyeux, B., Berra, E., Pouyssegur, J., and Danan, J.L. (2004). The gene encoding human retinoic acid-receptor-related orphan receptor alpha is a target for hypoxia-inducible factor 1. Biochem. J. 384, 79-85. https://doi.org/10.1042/BJ20040709
  9. Chen, B., Nelson, D.M., and Sadovsky, Y. (2006). N-myc down-regulated gene 1 modulates the response of term human trophoblasts to hypoxic injury. J. Biol. Chem. 281, 2764-2772. https://doi.org/10.1074/jbc.M507330200
  10. Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norris, D., Rastan, S., Stevanovic, M., Goodfellow, P.N., and Lovell-Badge, R. (1996). A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509-520.
  11. Cormier-Regard, S., Nguyen, S.V., and Claycomb, W.C. (1998). Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J. Biol. Chem. 273, 17787-17792. https://doi.org/10.1074/jbc.273.28.17787
  12. Demartino, G.N. and Gillette, T.G. (2007). Proteasomes: machines for all reasons. Cell 129, 659-662. https://doi.org/10.1016/j.cell.2007.05.007
  13. Dhanasekaran, D.N. (2006). Transducing the signals: a G protein takes a new identity. Sci. STKE 2006, pe31.
  14. Dhanasekaran, N., Prasad, M.V., Wadsworth, S.J., Dermott, J.M., and van Rossum, G. (1994). Protein kinase C-dependent and -independent activation of Na+/H+ exchanger by G alpha 12 class of G proteins. J. Biol. Chem. 269, 11802-11806.
  15. Dutt, P., Nguyen, N., and Toksoz, D. (2004). Role of Lbc RhoGEF in Galpha12/13-induced signals to Rho GTPase. Cell. Signal. 16, 201-209. https://doi.org/10.1016/S0898-6568(03)00132-3
  16. Filipek, A. (2006). S100A6 and CacyBP/SIP - two proteins discovered in ehrlich ascites tumor cells that are potentially involved in the degradation of beta-catenin. Chemotherapy 52, 32-34. https://doi.org/10.1159/000090240
  17. Fukuhara, S., Murga, C., Zohar, M., Igishi, T., and Gutkind, J.S. (1999). A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J. Biol. Chem. 274, 5868-5879. https://doi.org/10.1074/jbc.274.9.5868
  18. Giatromanolaki, A., Koukourakis, M.I., Gatter, K.C., Harris, A.L., and Sivridis, E. (2007). BNIP3 expression in endometrial cancer relates to active hypoxia inducible factor 1a pathway and prognosis. J. Clin. Pathol. 61, 217-220. https://doi.org/10.1136/jcp.2007.046680
  19. Gohla, A., Harhammer, R., and Schultz, G. (1998). The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J. Biol. Chem. 273, 4653-4659. https://doi.org/10.1074/jbc.273.8.4653
  20. Gohla, A., Offermanns, S., Wilkie, T.M., and Schultz, G. (1999). Differential involvement of Galpha12 and Galpha13 in receptor-mediated stress fiber formation. J. Biol. Chem. 274, 17901-17907. https://doi.org/10.1074/jbc.274.25.17901
  21. Granata, R., Trovato, L., Lupia, E., Sala, G., Settanni, F., Camussi, G., Ghidoni, R., and Ghigo, E. (2007). Insulinlike growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms. J. Thromb. Haemost. 5, 835-845. https://doi.org/10.1111/j.1538-7836.2007.02431.x
  22. Hart, M.J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W.D., Gilman, A.G., Sternweis, P.C., and Bollag, G. (1998). Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280, 2112-2114. https://doi.org/10.1126/science.280.5372.2112
  23. Hoang, V.M., Foulk, R., Clauser, K., Burlingame, A., Gibson, B.W., and Fisher, S.J. (2001). Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry 40, 4077-4086. https://doi.org/10.1021/bi0023910
  24. Huang, J.S., Dong, L., Kozasa, T., and Le Breton, G.C. (2007). Signaling through G(alpha)13 switch region I is essential for protease-activated receptor 1-mediated human platelet shape change, aggregation, and secretion. J. Biol. Chem. 282, 10210-10222. https://doi.org/10.1074/jbc.M605678200
  25. Ito, D., Walker, J.R., Thompson, C.S., Moroz, I., Lin, W., Veselits, M.L., Hakim, A.M., Fienberg, A.A., and Thinakaran, G. (2004). Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol. Cell. Biol. 24, 9456-9469. https://doi.org/10.1128/MCB.24.21.9456-9469.2004
  26. Jho, E.H. and Malbon, C.C. (1997). Galpha12 and Galpha13 mediate differentiation of P19 mouse embryonal carcinoma cells in response to retinoic acid. J. Biol. Chem. 272, 24461-24467. https://doi.org/10.1074/jbc.272.39.24461
  27. Kim, M.S., Lee, S.M., Kim, W.D., Ki, S.H., Moon, A., Lee, C.H., and Kim, S.G. (2007). G alpha 12/13 basally regulates p53 through Mdm4 expression. Mol. Cancer Res. 5, 473-484. https://doi.org/10.1158/1541-7786.MCR-06-0395
  28. Kitamura, K., Singer, W.D., Star, R.A., Muallem, S., and Miller, R.T. (1996). Induction of inducible nitric-oxide synthase by the heterotrimeric G protein Galpha13. J. Biol. Chem. 271, 7412-7415. https://doi.org/10.1074/jbc.271.13.7412
  29. Koike, T., Kimura, N., Miyazaki, K., Yabuta, T., Kumamoto, K., Takenoshita, S., Chen, J., Kobayashi, M., Hosokawa, M., Taniguchi, A., Kojima, T., Ishida, N., Kawakita, M., Yamamoto, H., Takematsu, H., Suzuki, A., Kozutsumi, Y., and Kannagi, R. (2004). Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. U.S.A. 101, 8132-8137. https://doi.org/10.1073/pnas.0402088101
  30. Kozasa, T., Jiang, X., Hart, M.J., Sternweis, P.M., Singer, W.D., Gilman, A.G., Bollag, G., and Sternweis, P.C. (1998). p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280, 2109-2111. https://doi.org/10.1126/science.280.5372.2109
  31. Ling, Q., Jacovina, A.T., Deora, A., Febbraio, M., Simantov, R., Silverstein, R.L., Hempstead, B., Mark, W.H., and Hajjar, K.A. (2004). Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J. Clin. Invest. 113, 38-48.
  32. Manes, T., Zheng, D.Q., Tognin, S., Woodard, A.S., Marchisio, P.C., and Languino, L.R. (2003). Alpha(v)beta3 integrin expression up-regulates cdc2, which modulates cell migration. J. Cell Biol. 161, 817-826. https://doi.org/10.1083/jcb.200212172
  33. Manjunath, S., Lee, C.H., VanWinkle, P., and Bailey-Serres, J. (1998). Molecular and biochemical characterization of cytosolic phosphoglucomutase in maize. Expression during development and in response to oxygen deprivation. Plant Physiol. 117, 997-1006. https://doi.org/10.1104/pp.117.3.997
  34. Martin-Rendon, E., Hale, S.J., Ryan, D., Baban, D., Forde, S.P., Roubelakis, M., Sweeney, D., Moukayed, M., Harris, A.L., Davies, K., and Watt, S.M. (2007). Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells 25, 1003-1012. https://doi.org/10.1634/stemcells.2006-0398
  35. Maruyama, K., Mori, Y., Murasawa, S., Masaki, H., Takahashi, N., Tsutusmi, Y., Moriguchi, Y., Shibazaki, Y., Tanaka, Y., Shibuya, M., Inada, M., Matsubara, H., and Iwasaka, T. (1999). Interleukin-1 beta upregulates cardiac expression of vascular endothelial growth factor and its receptor KDR/flk-1 via activation of protein tyrosine kinases. J. Mol. Cell. Cardiol. 31, 607-617. https://doi.org/10.1006/jmcc.1998.0895
  36. Nabors, L.B., Suswam, E., Huang, Y., Yang, X., Johnson, M.J., and King, P.H. (2003). Tumor necrosis factor alpha induces angiogenic factor up-regulation in malignant glioma cells: a role for RNA stabilization and HuR. Cancer Res. 63, 4181-4187.
  37. Offermanns, S., Mancino, V., Revel, J.P., and Simon, M.I. (1997). Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science 275, 533-536. https://doi.org/10.1126/science.275.5299.533
  38. Olbryt, M., Jarzab, M., Jazowiecka-Rakus, J., Simek, K., Szala, S., and Sochanik, A. (2006). Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro. Gene Expr. 13, 191-203. https://doi.org/10.3727/000000006783991818
  39. Oldham, W.M. and Hamm, H.E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60-71. https://doi.org/10.1038/nrm2299
  40. Pandya, N.M., Dhalla, N.S., and Santani, D.D. (2006). Angiogenesis--a new target for future therapy. Vascul. Pharmacol. 44, 265-274. https://doi.org/10.1016/j.vph.2006.01.005
  41. Plonk, S.G., Park, S.K., and Exton, J.H. (1998). The alpha-subunit of the heterotrimeric G protein G13 activates a phospholipase D isozyme by a pathway requiring Rho family GTPases. J. Biol. Chem. 273, 4823-4826. https://doi.org/10.1074/jbc.273.9.4823
  42. Potente, M., Urbich, C., Sasaki, K., Hofmann, W.K., Heeschen, C., Aicher, A., Kollipara, R., DePinho, R.A., Zeiher, A.M., and Dimmeler, S. (2005). Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382-2392. https://doi.org/10.1172/JCI23126
  43. Radhika, V., Onesime, D., Ha, J.H., and Dhanasekaran, N. (2004). Galpha13 stimulates cell migration through cortactin- interacting protein Hax-1. J. Biol. Chem. 279, 49406-49413. https://doi.org/10.1074/jbc.M408836200
  44. Ramirez-Solis, R., Davis, A.C., and Bradley, A. (1993). Gene targeting in embryonic stem cells. Meth. Enzymol. 225, 855-878. https://doi.org/10.1016/0076-6879(93)25054-6
  45. Ribatti, D., Nico, B., Spinazzi, R., Vacca, A., and Nussdorfer, G.G. (2005). The role of adrenomedullin in angiogenesis. Peptides 26, 1670-1675. https://doi.org/10.1016/j.peptides.2005.02.017
  46. Riobo, N.A. and Manning, D.R. (2005). Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol. Sci. 26, 146-154. https://doi.org/10.1016/j.tips.2005.01.007
  47. Ruppel, K.M., Willison, D., Kataoka, H., Wang, A., Zheng, Y.W., Cornelissen, I., Yin, L., Xu, S.M., and Coughlin, S.R. (2005). Essential role for Galpha13 in endothelial cells during embryonic development. Proc. Natl. Acad. Sci. U.S.A. 102, 8281-8286. https://doi.org/10.1073/pnas.0503326102
  48. Schwarzer, R., Tondera, D., Arnold, W., Giese, K., Klippel, A., and Kaufmann, J. (2005). REDD1 integrates hypoxia- mediated survival signaling downstream of phosphatidylinositol 3-kinase. Oncogene 24, 1138-1149. https://doi.org/10.1038/sj.onc.1208236
  49. Seghezzi, G., Patel, S., Ren, C.J., Gualandris, A., Pintucci, G., Robbins, E.S., Shapiro, R.L., Galloway, A.C., Rifkin, D.B., and Mignatti, P. (1998). Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J. Cell Biol. 141, 1659-1673. https://doi.org/10.1083/jcb.141.7.1659
  50. Shan, D., Chen, L., Wang, D., Tan, Y.C., Gu, J.L., and Huang, X.Y. (2006). The G protein G alpha(13) is required for growth factor-induced cell migration. Dev. Cell 10, 707-718. https://doi.org/10.1016/j.devcel.2006.03.014
  51. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-845. https://doi.org/10.1038/359843a0
  52. Simon, M.I., Strathmann, M.P., and Gautam, N. (1991). Diversity of G proteins in signal transduction, Science 252, 802-808. https://doi.org/10.1126/science.1902986
  53. Spiegelberg, B.D. and Hamm, H.E. (2007). Roles of G-protein-coupled receptor signaling in cancer biology and gene transcription. Curr. Opin. Genet. Dev. 17, 40-44. https://doi.org/10.1016/j.gde.2006.12.002
  54. Suzuki, N., Nakamura, S., Mano, H., and Kozasa, T. (2003). Galpha 12 activates Rho GTPase through tyrosine- phosphorylated leukemia-associated RhoGEF. Proc. Natl. Acad. Sci. U.S.A. 100, 733-738. https://doi.org/10.1073/pnas.0234057100
  55. Tai, Y.T., Podar, K., Gupta, D., Lin, B., Young, G., Akiyama, M., and Anderson, K.C. (2002). CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood 99, 1419-1427. https://doi.org/10.1182/blood.V99.4.1419
  56. Tazuke, S.I., Mazure, N.M., Sugawara, J., Carland, G., Faessen, G.H., Suen, L.F., Irwin, J.C., Powell, D.R., Giaccia, A.J., and Giudice, L.C. (1998). Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: a possible model for IGFBP-1 expression in fetal hypoxia. Proc. Natl. Acad. Sci. U.S.A. 95, 10188-10193. https://doi.org/10.1073/pnas.95.17.10188
  57. Tsopanoglou, N.E. and Maragoudakis, M.E. (1999). On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J. Biol. Chem. 274, 23969-23976. https://doi.org/10.1074/jbc.274.34.23969
  58. Voyno-Yasenetskaya, T., Conklin, B.R., Gilbert, R.L., Hooley, R., Bourne, H.R., and Barber, D.L. (1994). G alpha 13 stimulates Na-H exchange. J. Biol. Chem. 269, 4721-4724.
  59. Voyno-Yasenetskaya, T.A., Pace, A.M., and Bourne, H.R. (1994). Mutant alpha subunits of G12 and G13 proteins induce neoplastic transformation of Rat-1 fibroblasts. Oncogene 9, 2559-2565.
  60. Wang, L., Kwak, J.H., Kim, S.I., He, Y., and Choi, M.E. (2004). Transforming growth factor-beta1 stimulates vascular endothelial growth factor 164 via mitogen-activated protein kinase kinase 3-p38alpha and p38delta mitogen- activated protein kinase-dependent pathway in murine mesangial cells. J. Biol. Chem. 279, 33213-33219. https://doi.org/10.1074/jbc.M403758200
  61. Wang, V., Davis, D.A., Haque, M., Huang, L.E., and Yarchoan, R. (2005). Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 65, 3299-3306. https://doi.org/10.1158/0008-5472.CAN-04-4130
  62. Yang, J., Bian, W. and Jing, N.H. (1997). Nestin mRNA expression during the development of mouse central nervous system. Sheng Li Xue Bao 49, 657-665.
  63. Yu, H., Iyer, R.K., Yoo, P.K., Kern, R.M., Grody, W.W., and Cederbaum, S.D. (2002). Arginase expression in mouse embryonic development. Mech. Dev. 115, 151-155. https://doi.org/10.1016/S0925-4773(02)00089-8