DOI QR코드

DOI QR Code

Study on R-peak Detection Algorithm of Arrhythmia Patients in ECG

심전도 신호에서 부정맥 환자의 R파 검출 알고리즘 연구

  • Ahn, Se-Jong (Department of Computer Engineering, Korea Polytechnic University) ;
  • Lim, Chang-Joo (Department of Game&Multimedia Engineering, Korea Polytechnic University) ;
  • Kim, Yong-Gwon (Department of Radiological Science, Konyang University) ;
  • Chung, Sung-Taek (Department of Computer Engineering, Korea Polytechnic University)
  • 안세종 (한국산업기술대학교 컴퓨터공학과) ;
  • 임창주 (한국산업기술대학교 게임공학과) ;
  • 김용권 (건양대학교 방사선학과) ;
  • 정성택 (한국산업기술대학교 컴퓨터공학과)
  • Received : 2011.08.22
  • Accepted : 2011.10.06
  • Published : 2011.10.31

Abstract

ECG consists of various types of electrical signal on the heart, and feature point of these signals can be detected by analyzing the arrhythmia. So far, feature points extraction method for the detection of arrhythmia done in the many studies. However, it is not suitable for portable device using real time operation due to complicated operation. In this paper, R-peak were extracted using R-R interval and QRS width informations on patients. First, noise of low frequency bands eliminated using butterworth filter, and the R-peak was extracted by R-R interval moving average and QRS width moving average. In order to verify, it was experimented to compare the R-peak of data in MIT-BIH arrhythmia database and the R-peak of suggested algorithm. As a results, it showed an excellent detection for feature point of R-peak, even during the process of operation could be efficient way to confirm.

심전도는 다양한 형태의 전기적 신호로 이루어져 있으며, 이러한 신호들의 특징점을 분석함으로써 부정맥을 검출할 수 있다. 지금까지 부정맥 검출을 위한 특징점 추출 방법에 대하여 많은 연구가 이루어졌으나, 복잡한 연산과정으로 실시간 연산 결과를 활용하는 휴대형 기기에는 부적합하다. 이와 같은 문제점을 해결하기 위하여 본 연구에서는 환자의 R-R 간격과 QRS 너비의 정보를 이용하여 R파를 추출하였다. 우선 버터워스 필터를 이용하여 저주파 대역의 잡음을 제거하였으며, R-R간격의 이동평균과 QRS 너비의 이동평균을 이용하여 R파를 추출하였다. 이에 대한 결과 검증은 MIT-BIH 부정맥 데이터베이스의 데이터를 활용하여 실험하였으며, 제공된 데이터의 R파 위치와 제안한 알고리즘의 R파 위치를 비교하였다. 이에 대한 결과로는 제안한 알고리즘 방법이 우수한 검출 성능을 보였으며, 연산과정에서도 효율적인 방법임을 확인 할 수 있었다.

Keywords

References

  1. V.X. Afonso, et al., "Detecting ventricular fibrillation", IEEE Engineering in Medicine and Biology Society, vol. 14, Issue 2, pp.152-159, 1995. https://doi.org/10.1109/51.376752
  2. W. J. Brady, et al., "Wide QRS Complex Tachycardia: ECG Differential Diagnosis", The American Journal of Emergency Medicine, Vol. 17, No. 4, pp.376-381, 1999. https://doi.org/10.1016/S0735-6757(99)90091-8
  3. S.E. Dobbs, et, al.. "QRS Detection By Template Matching Using Real-Time Correlation On A Microcomputer", Journal of Clinical Engineering, Vol. 9, No. 3, pp.197-212, 1984. https://doi.org/10.1097/00004669-198407000-00002
  4. D.L. Pierce, et, al., "Fast Fourier Transformation of the Entire Low Amplitude Late QRS Potential to Predict Ventricular Tachycardia", Journal of the American College of Cardiology, Vol. 14, No. 7, pp.1731-1740, 1989. https://doi.org/10.1016/0735-1097(89)90024-7
  5. D.S. Benitez, et, al, "A New QRS Detection Algorithm Base on the Hilbert Transform", Computers in Cardiology of IEEE, vol.27 pp.379-382, 2000.
  6. S.K. Kil, et, al., "Recognition of Feature points in ECG and Human Pulse using Wavelet Transform", The Korean Institute of Electrical Engineers, Vol.55, No.2, pp.75-81, 2006.
  7. H.J. Chung, et, al. "A Study on R-peak Detection algorithm in ECG", Korea Multimedia Society, Vol.13, No.1, pp.438-441, 2010.
  8. Gary M. Friensen, et al., "A Comparison of the Noise Sensitivity of Nine QRS Detection Algorithms", IEEE Transactions on Biomedical Engineering, Vol.37, No. 1, pp.85-98, 1990. https://doi.org/10.1109/10.43620
  9. N.V. Thakor, et, al. "Applications of Adaptive Filtering to ECG Analysis: Noise Cancellation and Arrhythmia Detection", IEEE Transactions on Biomedical Engineering, Vol. 38, No. 8, pp.785-794, 1991. https://doi.org/10.1109/10.83591
  10. P. S. Hamilton, et, al. "Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database", IEEE Transactions on BioMedical Engineering, Vol. BME-33, No 12, pp.1157-1165, 1986. https://doi.org/10.1109/TBME.1986.325695