DOI QR코드

DOI QR Code

Effect of Gamma Energy of Positron Emission Radionuclide on X-Ray CT Image

양전자 방출 핵종(18F)의 감마에너지가 X선 CT영상에 미치는 영향

  • Kim, Gha-Jung (Department of Radiological Science, Far East University) ;
  • Bae, Seok-Hwan (Department of Radiological Science, Konyang University) ;
  • Kim, Ki-Jin (Department of Nuclear Medicine, Konyang University Hospital) ;
  • Oh, Hye-Kyong (Department of Radiological Technology, Daejeon Health Sciences College)
  • Received : 2011.08.12
  • Accepted : 2011.10.06
  • Published : 2011.10.31

Abstract

This study is aimed to assess the effect of the gamma ray of 511keV energy which is emitted from phantom where the positron emission radionuclide was injected on X-ray CT image. As a scanning method, the CT number and pixel value of the reference image where water was injected(0 mCi), and those acquired by changing the capacity of 18F(Fluorine), positron emission radionuclide, into 1 mCi, 2 mCi, 5 mCi, and 10 mCi were measured. As a result of measuring the CT number(HU) of the phantom image where the positron emission radionuclide($^{18}F$) was injected, there were reference water ($-7.58{\pm}0.66$ HU), 1 mCi($-9.85{\pm}0.50$ HU), 2 mCi($-10.27{\pm}0.21$ HU), 5 mCi($-11.31{\pm}0.66$ HU), and 10 mCi($-13.47{\pm}0.38$ HU). Compared with the image where it was filled with water, there was a reduction of 5.89 Hu in 10 mCi, 3.73 in 5 mCi, 2.69 HU in 2 mCi, and 2 HU in 1 mCi. As for the pixel value of the phantom image, there were reference water ($-2.70{\pm}0.75$), 1 mCi($-4.72{\pm}0.58$), 2 mCi($-6.01{\pm}0.78$), 5 mCi($-6.10{\pm}0.84$), and 10 mCi($-8.20{\pm}0.60$). Compared with the reference image, there was a reduction of 5.50 in 10 mCi, 3.40 in 5 mCi, 3.10 in 2 mCi, and 2.02 in 1 mCi. Through this experiment, it was indicated that, with the increase in the dose of the positron emission radionuclide($^{18}F$), the CT number and the pixel value of the image reduced proportionally, and the width of reduction showed a similar value, too. Accordingly, according to the degree of change in X-ray CT image due to the positron emission radionuclide in the quality control item of PET/CT, the proper standard should be established and it should be periodically managed.

양전자방출 방사성동위원소를 주입한 팬텀에서 방출되는 511keV 에너지의 감마선이 X-선 CT영상에 미치는 영향을 정량적으로 평가하고자 한다. 스캔방법은 증류수를 주입(0 mCi)한 기준영상과 양전자 방출핵종인 $^{18}F$(Fluorine) 의 용량을 1 mCi, 2 mCi, 5 mCi, 10 mCi로 변화시켜 획득된 영상의 CT 번호와 픽셀값을 측정하였다. 양전자 방출핵종($^{18}F$)을 주입한 팬텀 영상의 CT 번호(HU) 측정 결과, 기준물($-7.58{\pm}0.66$ HU), 1 mCi($-9.85{\pm}0.50$ HU), 2 mCi($-10.27{\pm}0.21$ HU), 5 mCi($-11.31{\pm}0.66$ HU), 10 mCi($-13.47{\pm}0.38$ HU)로 물을 채운 기준 영상과 비교하여 10 mCi에서는 5.89 HU, 5 mCi에서는 3.73 HU, 2 mCi에서는 2.69 HU, 1 mCi에서는 2 HU가 감소하였다. 팬텀 영상의 픽셀 값은 기준물($-2.70{\pm}0.75$), 1 mCi($-4.72{\pm}0.58$), 2 mCi($-6.01{\pm}0.78$), 5 mCi($-6.10{\pm}0.84$), 10 mCi($-8.20{\pm}0.60$)로 기준물영상과 비교한 픽셀 값의 변화는 10 mCi에서는 5.50, 5 mCi에서는 3.40, 2 mCi에서는 3.10, 1 mCi 에서는 2.02가 감소하는 것을 알 수 있었다. 본 실험을 통해 양전자 방출핵종($^{18}F$)의 용량(Dose) 증가에 따라 CT번호와 영상의 픽셀 값은 비례적으로 감소하였으며 감소폭 또한 비슷한 값을 나타냈다. 이에 PET/CT의 정도관리 항목에 양전자 방출핵종으로 인한 X선 CT 영상의 변화 정도와 그에 따른 적합기준을 마련하고 주기적 관리가 이루어져야 할 것이다.

Keywords

References

  1. Ministry of Health and Welfare, 2008 Annual Report of the Korea Central Cancer Registry, 2008
  2. Kinahan PE, Alessio AM, Fessler JA., "Dualenergy CT attenuation correction methods forquantitative assessment of response to cancer therapy with PET/CT imaging", Technol Cancer Res Treat, 5, pp. 319-27, 2006. https://doi.org/10.1177/153303460600500403
  3. Stahl A, Wieder H, Piert M, Wester HJ, et al.," Positron emission tomography as a tool for translational research in oncology", Molecular Imaging in Biology, 6, pp. 214-224, 2004. https://doi.org/10.1016/j.mibio.2004.04.003
  4. Juweid ME, Cheson BD., "Positron-emission tomography and assessment of cancer therapy", N Engl J Med, 354, pp. 496-507, 2006. https://doi.org/10.1056/NEJMra050276
  5. Kapoor V, McCook BM, Torok FS., "An introduction to PET-CT imaging", Radiographics, 24, pp. 523-543, 2004. https://doi.org/10.1148/rg.242025724
  6. Turkington TG., "Introduction to PET instrumentation", J Nucl Med Technol, 29, pp. 1-8, 2001.
  7. Wahl RL, Quint LE, Cieslak RD, et al., "Anatometabolic tumor imaging: fusion of FDGPET with CT or MRI to localize foci of increased activity", J Nucl Med, 34, pp. 1190-1197, 1993.
  8. Nehmeh SA. et al., "Correction for Oral Contrast Artifacts in CTAttenuation-corrected PET Images Obtained by Combined PET/CT", Journal of Nuclear Medicine, 44, pp. 1940-1944, 2003.
  9. LaCroix KJ, Tsui BM, Hasegawa BH, Brown JK., "Investigation of the Use of X-ray CT Images for Attenuation Compensation in SPECT", IEEE Transactions on Nuclear Science, 41, pp. 2793-2799, 1994. https://doi.org/10.1109/23.340649
  10. Fessler JA, Elbakri IA, Sukovic P, Clinthorne NH., "Maximum likelihood Dual-energy Tomographic Image Reconstruction", Medical Imaging 2002: Image Processing, 4684, pp. 38-49, 2002.
  11. Kinahan PE, Hasegawa BH, Beyer T., "X-ray based attenuation correction for positron emission tomography /computed tomography scanners", Semin Nucl Med, 33, pp. 166-179, 2003. https://doi.org/10.1053/snuc.2003.127307
  12. McCullough EC, Holmes TW., "Acceptance testing computerized radiation therapy treatment planning systems: direct utilization of CT data", Med Phys, 12, pp. 237-42, 1985. https://doi.org/10.1118/1.595713
  13. Schneider U, Pedroni E, Lomax A., "The calibration of CT Hounsfield units for radiotherapy treatment planning", Phys Med Biol, 41, pp. 111-124, 1994.
  14. Minister of Health and Welfare Ordinance No, 65. Special medical equipment, installation and operation of the rules. 2011.(Revision)
  15. Mutic S, Palta JR, Butker EK, et al., "Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No 66", Med Phys. 30, pp. 762-792, 2003.
  16. Mutic S, Dempsey JF, Bosch WR, et al., "Multimodality image registration quality assurance for conformal three-dimensional treatment planning", Int J Radiat Oncol Biol Phys, 51, pp. 255-260, 2001