DOI QR코드

DOI QR Code

SERS Immunoassay Using Microcontact Printing for Application of Sensitive Biosensors

  • Hong, Won-Jin (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Seo, Hyeong-Kuyn (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Jung, Young-Mee (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University)
  • Received : 2011.08.18
  • Accepted : 2011.10.09
  • Published : 2011.12.20

Abstract

We introduced a promising patterned substrate by using a microcontact printing method that can be used for SERS immunoassays based on antigen-antibody binding. SERS spectrum of the Raman reporter with antibody, which is rhodamine 6G (R6G) adsorbed on colloidal gold nanoparticles, was observed only for the surfaces in which prostate-specific antigen (PSA) is present on the substrate that is attached to an immobilized layer of antibody on the gold nanoparticles layer of the patterned substrate. Raman mapping images clearly showed that the antibodies on the Raman reporter were successfully and selectively conjugated with the antigen on the patterned substrate. This method could be potentially extended to multi-protein detections and ultrasensitive biosensors.

Keywords

References

  1. Kneipp, K.; Moskovits, M.; Kneipp, H. Surface-Enhanced Raman Scattering-Physics and Applications; Springer: Heidelberg and Berlin. 2006.
  2. Aroca, R. Surface-Enhanced Vibrational Spectroscopy; John Wiley and Sons: Chichester; UK. 2006.
  3. Schatz G. C.; Van Duyne, P. R. Handbook of Vibrational Spectroscopy Vol. 1: Electromagnetic Mechanism of Surface-Enhanced Spectroscopy, Chalmers, UK. J. M. 2002. Griffiths, P. R. Eds.; John Wiley and Sons: Chichester.
  4. Qian, X.-M.; Nie, S. M. Chem. Soc. Rev. 2008, 37, 912. https://doi.org/10.1039/b708839f
  5. Graham, D.; Goodacre, R. Chem. Soc. Rev. 2008, 37, 883. https://doi.org/10.1039/b804297g
  6. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev. 1999, 99, 2957. https://doi.org/10.1021/cr980133r
  7. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667. https://doi.org/10.1103/PhysRevLett.78.1667
  8. Chen, L.; Park, Y.; Seo, H.; Hong, W.; Jung, Y. M.; Zhao, B. J. Raman Spectrosc. 2011 in press.
  9. Combs, Z. A.; Chang, S.; Clark, T.; Singamaneni, S.; Anderson, K. D.; Tsukruk, V. V. Langmuir 2011, 27, 3198. https://doi.org/10.1021/la104787w
  10. Galarreta, B. C.; Norton, P. R.; Lagugne-Labarthet, F. Langmuir 2011, 27, 1494. https://doi.org/10.1021/la1047497
  11. Vo-Dinh, T.; Wang, H.-N.; Scaffidi, J. J. Biophoton 2010, 3, 89.
  12. Yoon, K. J.; Seo, H. K.; Hwang, H.; Pyo, D.; Eom, I.-Y.; Hahn, J. H.; Jung, Y. M. Bull. Korean Chem. Soc. 2010, 31, 1215. https://doi.org/10.5012/bkcs.2010.31.5.1215
  13. Shen, A.; Chen, L.; Xie, W.; Hu, J.; Zeng, A.; Richards, R.; Hu, J. J. Adv. Funct. Mat. 2010, 20, 969. https://doi.org/10.1002/adfm.200901847
  14. Xiao, N.; Yu, C. Anal. Chem. 2010, 82, 3659. https://doi.org/10.1021/ac902924p
  15. Han, X. X.; Kitahama, Y.; Itoh, T.; Wang, C. X.; Zhao, B.; Ozaki, Y. Anal. Chem. 2009, 81, 3350. https://doi.org/10.1021/ac802553a
  16. Wang, G.; Park, H.-Y.; Lipert, R. J. Anal. Chem. 2009, 81, 9643. https://doi.org/10.1021/ac901711f
  17. Bao, F.; Yao, J.-L.; Gu, R.-A. Langmuir 2009, 25, 10782. https://doi.org/10.1021/la901337r
  18. Chon, H.; Lee, S.; Son, S. W.; Oh, C. H.; Choo, J. Anal. Chem. 2009, 81, 3029. https://doi.org/10.1021/ac802722c
  19. Jehn, C.; Küstner, B.; Adam, P.; Marx, A.; Ströbel, P.; Schmuck, C.; Schlücker, S. Phys. Chem. Chem. Phys. 2009, 11, 7499. https://doi.org/10.1039/b905092b
  20. Wang, G.; Park, H.-Y.; Lipert, R. J. Anal. Chem. 2009, 81, 9643. https://doi.org/10.1021/ac901711f
  21. Han, X. X.; Cai, L. J.; Guo, J.; Wang, C. X.; Ruan, W. D.; Han, W. Y.; Xu, W. Q.; Zhao, B.; Ozaki, Y. Anal. Chem. 2008, 80, 3020. https://doi.org/10.1021/ac702497t
  22. Sun, L.; Yu, C.; Irudayaraj, J. Anal. Chem. 2008, 80, 3342. https://doi.org/10.1021/ac702542n
  23. Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Chem. Soc. Rev. 2008, 37, 885 https://doi.org/10.1039/b710915f
  24. Yang, Y.; Shi, J.; Tanaka, T.; Nogami, M. Langmuir 2007, 23, 12042. https://doi.org/10.1021/la701610s
  25. Guo, S.; Wang, Y.; Wang, E. Nanotechnology 2007, 18, 405602. https://doi.org/10.1088/0957-4484/18/40/405602
  26. Driskell, J. D.; Uhlenkamp, J. M.; Lipert, R. J.; Porter, M. D. Anal. Chem. 2007, 79, 4141. https://doi.org/10.1021/ac0701031
  27. Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A. Proc. Nat. Acad. Sci. 2006, 103, 13300. https://doi.org/10.1073/pnas.0605889103
  28. Driskell, J. D.; Kwarta, K. M.; Lipert, R. J.; Porter, M. D.; Neill, J. D.; Ridpath, J. F. Anal. Chem. 2005, 77, 6147. https://doi.org/10.1021/ac0504159
  29. Lyandres, O.; Shah, N. C.; Yonzon, C. R.; Walsh, J. T., Jr.; Glucksberg, M. R.; Van Duyne, R. P. Anal. Chem. 2005, 77, 6134. https://doi.org/10.1021/ac051357u
  30. Cao, Y. C.; Jin, R.; Mirkin, C. A. Science 2002, 297, 1536. https://doi.org/10.1126/science.297.5586.1536
  31. Nie, S.; Emory, S. R. Science 1997, 275, 1102. https://doi.org/10.1126/science.275.5303.1102
  32. Ni, J.; Lipert, R. J.; Dawson, G. B.; Porter, M. D. Anal. Chem. 1999, 71, 4903. https://doi.org/10.1021/ac990616a
  33. Combs, Z. A.; Chang, S.; Clark, T.; Singamaneni, S.; Anderson, K. D.; Tsukruk, V. V. Langmuir 2011, 27, 3198. https://doi.org/10.1021/la104787w
  34. Offenhausser, A.; Bocker-Meffert, S.; Decker, T.; Helpenstein, R.; Gasteier, P.; Groll, J.; Moller, M.; Reska, A.; Schafer, S.; Schulte, P.; Vogt-Eisele, A. Soft Matter 2007, 3, 290. https://doi.org/10.1039/b607615g
  35. Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550. https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  36. Terry, L. A.; White, S. F.; Tigwell, L. J. J. Agric. Food Chem. 2005, 53, 1309. https://doi.org/10.1021/jf040319t
  37. Kanda, V.; Kariuki, J. K.; Harrison, D. J.; Mcdermott, M. T. Anal. Chem. 2004, 76, 7252.
  38. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nat. Biotechnol. 2003, 21, 47. https://doi.org/10.1038/nbt767
  39. Rowe, C. A.; Scruggs, S. B.; Feldstein, M. J.; Golden, J. P.; Ligler, F. S. Anal. Chem. 1999, 71, 431.
  40. Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, P.; Alivisatos, A. P. Science 1998, 281, 2013. https://doi.org/10.1126/science.281.5385.2013
  41. Chan, W. C.; Nie, S. Science 1998, 281, 2016. https://doi.org/10.1126/science.281.5385.2016
  42. Lee, M.; Lee, S.; Lee, J.; Lim, H.; Seong, G. H.; Lee, E. K.; Chang, S.; Oh, C. H. Choo, J. Biosens. Bioelectron 2011, 26, 2135. https://doi.org/10.1016/j.bios.2010.09.021
  43. Frens, G. Nat. Phys. Sci. 1973, 241, 20. https://doi.org/10.1038/physci241020a0
  44. Pang, I.; Kim, H.; Kim, S.; Lee, J. Kor. J. Mater. Res. 2008, 18, 664. https://doi.org/10.3740/MRSK.2008.18.12.664
  45. Kim, S.; Pang, I.; Lee, J. Macromol. Rapid Commun. 2007, 28, 1574. https://doi.org/10.1002/marc.200700272

Cited by

  1. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications vol.117, pp.12, 2017, https://doi.org/10.1021/acs.chemrev.7b00027