• Title/Summary/Keyword: 버페팅 응답

Search Result 13, Processing Time 0.025 seconds

Buffeting Response Correction Method based on Dynamic Properties of Existing Cable-Stayed Bridge (공용 사장교의 동적특성을 반영하는 버페팅 응답보정법)

  • Kim, Byeong Cheol;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • According to design specifications for structural safety, a bridge in initial design step has been modelled to have larger self-weight, external loads and less stiffness than those of real one in service. Thereby measured buffeting responses of existing bridge show different distributions from those of the design model in design step. In order to obtain accurate buffeting responses of the in-site bridge, the analysis model needs to be modified by considering the measured natural frequencies. Until now, a Manual Tuning Method (MTM) has been widely used to obtain the Measurement-based Model(MBM) that has equal natural frequencies to the real bridge. However, since state variables can be selected randomly and its result is not apt to converge exact rapidly, MTM takes a lot of effort and elapsed time. This study presents Buffeting Response Correction Method (BRCM) to obtain more exact buffeting response above MTM. The BRCM is based on the idea the commonly used frequency domain buffeting analysis does not need all structural properties except mode shapes, natural frequencies and damping ratio. BRCM is used to improve each modal buffeting responses of the design model by substituting measured natural frequencies. The measured natural frequencies are determined from acceleration time-history in ordinary vibration of the real bridge. As illustrated examples, simple beam is applied to compare the results of BRCM with those of a assumed MBM by numerical simulation. Buffeting responses of BRCM are shown to be appropriate for those of in-site bridge and the difference is less than 3% between the responses of BRCM and MTM. Therefore, BRCM can calculate easily and conveniently the buffeting responses and improve effectively maintenance and management of in-site bridge than MTM.

Buffeting Responses of Concrete Cable-stayed Bridge Considering Turbulent Characteristics of Bridge Site (현장 풍속 특성을 반영한 콘크리트 사장교의 버페팅 응답)

  • Kim, Sung-Ho;Yhim, Sung Soon;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.97-104
    • /
    • 2011
  • This study presents the aerodynamic admittance function of bridge girder under turbulent flow generated from wind velocity spectrum measured at bridge site. Three dimensional buffeting analysis of concrete cable-stayed bridge were performed considering aerodynamic admittance functions obtained from four different methods. It is revealed from the analysis that vertical buffeting responses considering proper aerodynamic admittance functions were just half of that neglecting aerodynamic admittance function. Grid turbulence was found to relatively lower the aerodynamic admittance function at low frequency range, and to underestimate the buffeting wind forces. It is recommended to use the aerodynamic admittance function evaluated from flutter derivatives or measured at active turbulence in order to properly predict the buffeting responses of bridges.

A Study on Buffeting Responses of a In-service Steel Cable-stayed Bridge Using Full-scale Measurements (실측 데이터를 이용한 공용중인 강사장교의 버페팅 응답 분석)

  • Lee, Deok Keun;Kong, Min Joon;You, Dong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.349-359
    • /
    • 2016
  • In order to analytically evaluate buffeting responses, the analysis of wind characteristics such as turbulence intensity, turbulence length, gust, roughness coefficient, etc must be a priority. Static aerodynamic force coefficients, flutter coefficients, structural damping ratios, aerodynamic damping ratios and natural frequencies affect the analytical responses. The bridge interested in this paper has being been used for 32 years. As the time passes, current terrain conditions around the bridge are different markedly from the conditions it was built 32 years ago. Also, wind environments were considerably varied by the climate change. For this reason, it is necessary to evaluate the turbulence intensity, length, spectrum and roughness coefficient of the bridge site from full-scale measurements using the structural health monitoring system. The evaluation results indicate that wind characteristics of bridge site is analogous to that of open terrain although the bridge is located on the coastal area. To calculate buffeting responses, the analysis variables such as damping ratios, static aerodynamic force coefficients and natural frequency were evaluated from measured data. The analysis was performed with regard to 4 cases. The evaluated variables from measured data are applied to the first and second analysis cases. And the other analysis cases were performed based on Design Guidelines for Steel Cable Supported Bridges. The calculated responses of each analysis cases are compared with the buffeting response measured at less than 25m/s wind speed. It is verified that the responses by the numerical analysis applying the estimated variables based on full-scale measurements are well agreed with the measured actual buffeting responses under wind speed 25m/s. Also, the extreme wind speed corresponding to a recurrence interval 200 years is derived from Gumbel distribution. The derived wind speed for return period of 200 years is 45m/s. Therefore the buffeting responses at wind speed 45m/s is determined by the analysis applying the estimated variables.

Evaluation of buffeting responses of a cable stayed bridge in construction during typhoon Kompasu (곤파스 태풍에 대한 가설 중 사장교의 버페팅 응답 평가)

  • Lee, Ho;Kim, Byoung-Jin;Kim, Kwon-Taek;Kim, Kwon-Taek;Yoo, Chul-Hwan;Kim, Ho-Kyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.222-223
    • /
    • 2011
  • 본 논문에서는 콘크리트 사장교 가설 중 태풍 곤파스 내습시 교량에 설치된 계측 장비들의 측정된 데이터를 이용하여 난류스펙트럼과 고유진동수를 분석하였다. 현장조건을 반영한 업데이트된 해석모델로 버페팅해석을 수행하였다. 해석결과는 SRSS조합으로 응답을 산정하여 주탑의 가속도 응답과 계측된 가속도 응답을 평가하였다. 버페팅해석 결과는 전반적으로 해석결과와 유사한 경향을 보였다.

  • PDF

Structural countermeasure for wind-induced vibration of suspension bridge catwalks (현수교 캣워크의 구조적 진동억제 대책)

  • Lee, Han-Kyu;Lee, Seung-Ho;Kwon, Soon-Duck;Kim, Jong-Hwa
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.84-87
    • /
    • 2011
  • 본 연구에서는 버페팅 해석을 통해 현수교 캣워크에 작용하는 풍하중에 대한 정적 및 동적 응답을 알아 보고 진동 억제 대책을 제시하였다. 캣워크는 영구구조물이 아닌 임시구조물이기 때문에 그동안 절적한 평가가 수행되지 못하였다. 따라서 본 연구는 풍하중에 의한 캣워크의 동적 응답을 해석적인 방법을 통해 알아보았으며, 동적 변위를 산정하기 위해 시간이력 해석 방법을 통해 버페팅 해석을 수행하였다. 그 결과로 부터 캣워크의 수평변위를 억제하기 위해 주케이블을 시공중에 연결하는 방법과 스테이 로프를 설치하는 방법을 제시하였다.

  • PDF

Evaluation of buffeting response predictions of a cable-stayed bridge from full-scale measurements during a typhoon (실교량 계측을 통한 태풍 영양하의 사장교 버페팅 응답 평가)

  • Park, Jin;Kim, Ho-Kyung;Cho, Soo-Jin;Kim, Gi-Nam;Park, Jun-Yong;Seo, Ju-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.82-83
    • /
    • 2011
  • 본 논문에서는 3경간 연속 사장교에 설치 된 계측장비에서 2010년 태풍 곤파스 당시 계측한 바람 및 교량응답 자료를 바탕으로 사장교의 버페팅 응답을 평가하였다. 계측 된 바람자료에서 스펙트럼 분석을 수행하고 그 결과를 버페팅 해석에 반영하여 실교량 거동을 예측하였다. 예측 된 교량의 거동은 실제 계측 된 값과 유산한 결과를 나타내었다.

  • PDF

Parametric Study on the Buffeting Response for a Cable-Stayed Bridge (사장교의 버페팅 응답 변수 연구)

  • Kim, Ho-Kyung;Choi, Sung Won;Kim, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.371-382
    • /
    • 2006
  • A buffeting analysis is utilized for the estimation of aerodynamic vulnerability of a cable-stayed bridge due to upcoming wind turbulences. The buffeting analysis requires several input parameters such as structural parameters, aerodynamic parameters, and aero-elastic parameters. This study is motivated to estimate the sensitivity of these parameters on buffeting responses. The Seohae bridge is selected as an example bridge. The investigated parameters consist of the inclination of lift and drag coefficient of stiffening girder section, exponential decay factors of span-wise distributed wind turbulences, roughness length, spectra of wind velocity fluctuation, and structural damping. The buffeting response showed high dependency on the input parameters. As conclusions, the importance of parameter selection is emphasized. A further study is also proposed for more general conclusions.

Vibration Control for Tower of Suspension Bridge under Turbulence using TMD (난류하에서의 TMD에 의한 현수교 주탑의 진동제어)

  • Kim, Ki Du;Hwang, Yoon Koog;Byun, Yun Joo;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.181-191
    • /
    • 1997
  • Before cables are constructed, tower of suspension bridge is behaved as a cantilever type. Buffeting occured by unsteady loading of the tower due to velocity fluctuation in the oncoming flow has a wind velocity consistent with fundamental frequency of the tower and may give rise to large response by the tower resonance. To reduce the dynamic response by buffeting, the behavior of tower with TMD(Tuned Mass Damper) has studied using finite element method in time domain. The buffeting was obtained by transforming the velocity spectrum in frequency domain to random variable in certain time domain. The most probable maximum displacement which can be occured during the time interval was obtained using peak factor. The optimum location for TMD installation and TMD specification were decided by parametric study. Also, the effect of vibration control about various wind velocity was studied by the TMD which has optimum specification and location.

  • PDF

Benchmark Test of CFD Software Packages for Sunroof Buffeting in Hyundai Simplified Model (차량 썬루프 버페팅 현상에 대한 전산 해석 소프트웨어의 예측 성능 벤치마크 연구)

  • Cho, Munhwan;Oh, Chisung;Kim, HyoungGun;Ih, Kang-duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.171-179
    • /
    • 2014
  • Sunroof buffeting is one of the most critical issues in the vehicle wind noise phenomena. The experimental approach to solve this issue typically requires a lot of time and resources. To reduce time and cost, the numerical approach could be taken, which can also privide more insights into physical phenomena involved in sunroof buffeting, only if the accuracy in its predictions are guranteed. The benchmark test of various numerical solvers is carried out for the buffeting behavior of a simplified vehicle body, the Hyundai simplified model(HSM). The results of each solver are compared to the experimental measurements in a Hyundai aeroacoustic wind tunnel(HAWT) at various wind speeds. In particular, acoustic response tests were performed and the results were provided prior to all simulations in order to consider the real world effects that could introduce discrepancies between the numerical and experimental approaches. Through this study, most solvers can demonstrate an acceptable accuracy level for actual commercial development and high precision experimental data and computational prediction priories can be shared in order to promote the numerical accuracy level of each numerical solver.